ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffo2 GIF version

Theorem dffo2 5130
Description: Alternate definition of an onto function. (Contributed by NM, 22-Mar-2006.)
Assertion
Ref Expression
dffo2 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))

Proof of Theorem dffo2
StepHypRef Expression
1 fof 5126 . . 3 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
2 forn 5129 . . 3 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
31, 2jca 300 . 2 (𝐹:𝐴onto𝐵 → (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
4 ffn 5066 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
5 df-fo 4928 . . . 4 (𝐹:𝐴onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵))
65biimpri 131 . . 3 ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴onto𝐵)
74, 6sylan 277 . 2 ((𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵) → 𝐹:𝐴onto𝐵)
83, 7impbii 124 1 (𝐹:𝐴onto𝐵 ↔ (𝐹:𝐴𝐵 ∧ ran 𝐹 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103   = wceq 1284  ran crn 4364   Fn wfn 4917  wf 4918  ontowfo 4920
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-11 1437  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-in 2979  df-ss 2986  df-f 4926  df-fo 4928
This theorem is referenced by:  foco  5136  dff1o5  5155  dffo3  5335  dffo4  5336  fo1stresm  5808  fo2ndresm  5809  fo2ndf  5868  1fv  9149
  Copyright terms: Public domain W3C validator