ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1fv GIF version

Theorem 1fv 9149
Description: A one value function. (Contributed by Alexander van der Vekens, 3-Dec-2017.)
Assertion
Ref Expression
1fv ((𝑁𝑉𝑃 = {⟨0, 𝑁⟩}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁))

Proof of Theorem 1fv
StepHypRef Expression
1 0z 8362 . . . . . 6 0 ∈ ℤ
2 f1osng 5187 . . . . . 6 ((0 ∈ ℤ ∧ 𝑁𝑉) → {⟨0, 𝑁⟩}:{0}–1-1-onto→{𝑁})
31, 2mpan 414 . . . . 5 (𝑁𝑉 → {⟨0, 𝑁⟩}:{0}–1-1-onto→{𝑁})
4 f1ofo 5153 . . . . . 6 ({⟨0, 𝑁⟩}:{0}–1-1-onto→{𝑁} → {⟨0, 𝑁⟩}:{0}–onto→{𝑁})
5 dffo2 5130 . . . . . . 7 ({⟨0, 𝑁⟩}:{0}–onto→{𝑁} ↔ ({⟨0, 𝑁⟩}:{0}⟶{𝑁} ∧ ran {⟨0, 𝑁⟩} = {𝑁}))
65biimpi 118 . . . . . 6 ({⟨0, 𝑁⟩}:{0}–onto→{𝑁} → ({⟨0, 𝑁⟩}:{0}⟶{𝑁} ∧ ran {⟨0, 𝑁⟩} = {𝑁}))
7 fzsn 9084 . . . . . . . . . . . . 13 (0 ∈ ℤ → (0...0) = {0})
81, 7ax-mp 7 . . . . . . . . . . . 12 (0...0) = {0}
98eqcomi 2085 . . . . . . . . . . 11 {0} = (0...0)
109feq2i 5060 . . . . . . . . . 10 ({⟨0, 𝑁⟩}:{0}⟶{𝑁} ↔ {⟨0, 𝑁⟩}:(0...0)⟶{𝑁})
1110biimpi 118 . . . . . . . . 9 ({⟨0, 𝑁⟩}:{0}⟶{𝑁} → {⟨0, 𝑁⟩}:(0...0)⟶{𝑁})
12 snssi 3529 . . . . . . . . 9 (𝑁𝑉 → {𝑁} ⊆ 𝑉)
13 fss 5074 . . . . . . . . 9 (({⟨0, 𝑁⟩}:(0...0)⟶{𝑁} ∧ {𝑁} ⊆ 𝑉) → {⟨0, 𝑁⟩}:(0...0)⟶𝑉)
1411, 12, 13syl2an 283 . . . . . . . 8 (({⟨0, 𝑁⟩}:{0}⟶{𝑁} ∧ 𝑁𝑉) → {⟨0, 𝑁⟩}:(0...0)⟶𝑉)
1514ex 113 . . . . . . 7 ({⟨0, 𝑁⟩}:{0}⟶{𝑁} → (𝑁𝑉 → {⟨0, 𝑁⟩}:(0...0)⟶𝑉))
1615adantr 270 . . . . . 6 (({⟨0, 𝑁⟩}:{0}⟶{𝑁} ∧ ran {⟨0, 𝑁⟩} = {𝑁}) → (𝑁𝑉 → {⟨0, 𝑁⟩}:(0...0)⟶𝑉))
174, 6, 163syl 17 . . . . 5 ({⟨0, 𝑁⟩}:{0}–1-1-onto→{𝑁} → (𝑁𝑉 → {⟨0, 𝑁⟩}:(0...0)⟶𝑉))
183, 17mpcom 36 . . . 4 (𝑁𝑉 → {⟨0, 𝑁⟩}:(0...0)⟶𝑉)
19 fvsng 5380 . . . . 5 ((0 ∈ ℤ ∧ 𝑁𝑉) → ({⟨0, 𝑁⟩}‘0) = 𝑁)
201, 19mpan 414 . . . 4 (𝑁𝑉 → ({⟨0, 𝑁⟩}‘0) = 𝑁)
2118, 20jca 300 . . 3 (𝑁𝑉 → ({⟨0, 𝑁⟩}:(0...0)⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁))
2221adantr 270 . 2 ((𝑁𝑉𝑃 = {⟨0, 𝑁⟩}) → ({⟨0, 𝑁⟩}:(0...0)⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁))
23 feq1 5050 . . . 4 (𝑃 = {⟨0, 𝑁⟩} → (𝑃:(0...0)⟶𝑉 ↔ {⟨0, 𝑁⟩}:(0...0)⟶𝑉))
24 fveq1 5197 . . . . 5 (𝑃 = {⟨0, 𝑁⟩} → (𝑃‘0) = ({⟨0, 𝑁⟩}‘0))
2524eqeq1d 2089 . . . 4 (𝑃 = {⟨0, 𝑁⟩} → ((𝑃‘0) = 𝑁 ↔ ({⟨0, 𝑁⟩}‘0) = 𝑁))
2623, 25anbi12d 456 . . 3 (𝑃 = {⟨0, 𝑁⟩} → ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) ↔ ({⟨0, 𝑁⟩}:(0...0)⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁)))
2726adantl 271 . 2 ((𝑁𝑉𝑃 = {⟨0, 𝑁⟩}) → ((𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁) ↔ ({⟨0, 𝑁⟩}:(0...0)⟶𝑉 ∧ ({⟨0, 𝑁⟩}‘0) = 𝑁)))
2822, 27mpbird 165 1 ((𝑁𝑉𝑃 = {⟨0, 𝑁⟩}) → (𝑃:(0...0)⟶𝑉 ∧ (𝑃‘0) = 𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  wss 2973  {csn 3398  cop 3401  ran crn 4364  wf 4918  ontowfo 4920  1-1-ontowf1o 4921  cfv 4922  (class class class)co 5532  0cc0 6981  cz 8351  ...cfz 9029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1re 7070  ax-addrcl 7073  ax-rnegex 7085  ax-pre-ltirr 7088  ax-pre-apti 7091
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-neg 7282  df-z 8352  df-uz 8620  df-fz 9030
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator