ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dif1o GIF version

Theorem dif1o 6044
Description: Two ways to say that 𝐴 is a nonzero number of the set 𝐵. (Contributed by Mario Carneiro, 21-May-2015.)
Assertion
Ref Expression
dif1o (𝐴 ∈ (𝐵 ∖ 1𝑜) ↔ (𝐴𝐵𝐴 ≠ ∅))

Proof of Theorem dif1o
StepHypRef Expression
1 df1o2 6036 . . . 4 1𝑜 = {∅}
21difeq2i 3087 . . 3 (𝐵 ∖ 1𝑜) = (𝐵 ∖ {∅})
32eleq2i 2145 . 2 (𝐴 ∈ (𝐵 ∖ 1𝑜) ↔ 𝐴 ∈ (𝐵 ∖ {∅}))
4 eldifsn 3517 . 2 (𝐴 ∈ (𝐵 ∖ {∅}) ↔ (𝐴𝐵𝐴 ≠ ∅))
53, 4bitri 182 1 (𝐴 ∈ (𝐵 ∖ 1𝑜) ↔ (𝐴𝐵𝐴 ≠ ∅))
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103  wcel 1433  wne 2245  cdif 2970  c0 3251  {csn 3398  1𝑜c1o 6017
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-nul 3252  df-sn 3404  df-suc 4126  df-1o 6024
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator