![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2oconcl | GIF version |
Description: Closure of the pair swapping function on 2𝑜. (Contributed by Mario Carneiro, 27-Sep-2015.) |
Ref | Expression |
---|---|
2oconcl | ⊢ (𝐴 ∈ 2𝑜 → (1𝑜 ∖ 𝐴) ∈ 2𝑜) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpri 3421 | . . . . 5 ⊢ (𝐴 ∈ {∅, 1𝑜} → (𝐴 = ∅ ∨ 𝐴 = 1𝑜)) | |
2 | difeq2 3084 | . . . . . . . 8 ⊢ (𝐴 = ∅ → (1𝑜 ∖ 𝐴) = (1𝑜 ∖ ∅)) | |
3 | dif0 3314 | . . . . . . . 8 ⊢ (1𝑜 ∖ ∅) = 1𝑜 | |
4 | 2, 3 | syl6eq 2129 | . . . . . . 7 ⊢ (𝐴 = ∅ → (1𝑜 ∖ 𝐴) = 1𝑜) |
5 | difeq2 3084 | . . . . . . . 8 ⊢ (𝐴 = 1𝑜 → (1𝑜 ∖ 𝐴) = (1𝑜 ∖ 1𝑜)) | |
6 | difid 3312 | . . . . . . . 8 ⊢ (1𝑜 ∖ 1𝑜) = ∅ | |
7 | 5, 6 | syl6eq 2129 | . . . . . . 7 ⊢ (𝐴 = 1𝑜 → (1𝑜 ∖ 𝐴) = ∅) |
8 | 4, 7 | orim12i 708 | . . . . . 6 ⊢ ((𝐴 = ∅ ∨ 𝐴 = 1𝑜) → ((1𝑜 ∖ 𝐴) = 1𝑜 ∨ (1𝑜 ∖ 𝐴) = ∅)) |
9 | 8 | orcomd 680 | . . . . 5 ⊢ ((𝐴 = ∅ ∨ 𝐴 = 1𝑜) → ((1𝑜 ∖ 𝐴) = ∅ ∨ (1𝑜 ∖ 𝐴) = 1𝑜)) |
10 | 1, 9 | syl 14 | . . . 4 ⊢ (𝐴 ∈ {∅, 1𝑜} → ((1𝑜 ∖ 𝐴) = ∅ ∨ (1𝑜 ∖ 𝐴) = 1𝑜)) |
11 | 1on 6031 | . . . . . 6 ⊢ 1𝑜 ∈ On | |
12 | difexg 3919 | . . . . . 6 ⊢ (1𝑜 ∈ On → (1𝑜 ∖ 𝐴) ∈ V) | |
13 | 11, 12 | ax-mp 7 | . . . . 5 ⊢ (1𝑜 ∖ 𝐴) ∈ V |
14 | 13 | elpr 3419 | . . . 4 ⊢ ((1𝑜 ∖ 𝐴) ∈ {∅, 1𝑜} ↔ ((1𝑜 ∖ 𝐴) = ∅ ∨ (1𝑜 ∖ 𝐴) = 1𝑜)) |
15 | 10, 14 | sylibr 132 | . . 3 ⊢ (𝐴 ∈ {∅, 1𝑜} → (1𝑜 ∖ 𝐴) ∈ {∅, 1𝑜}) |
16 | df2o3 6037 | . . 3 ⊢ 2𝑜 = {∅, 1𝑜} | |
17 | 15, 16 | syl6eleqr 2172 | . 2 ⊢ (𝐴 ∈ {∅, 1𝑜} → (1𝑜 ∖ 𝐴) ∈ 2𝑜) |
18 | 17, 16 | eleq2s 2173 | 1 ⊢ (𝐴 ∈ 2𝑜 → (1𝑜 ∖ 𝐴) ∈ 2𝑜) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 661 = wceq 1284 ∈ wcel 1433 Vcvv 2601 ∖ cdif 2970 ∅c0 3251 {cpr 3399 Oncon0 4118 1𝑜c1o 6017 2𝑜c2o 6018 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-uni 3602 df-tr 3876 df-iord 4121 df-on 4123 df-suc 4126 df-1o 6024 df-2o 6025 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |