ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2oconcl GIF version

Theorem 2oconcl 6045
Description: Closure of the pair swapping function on 2𝑜. (Contributed by Mario Carneiro, 27-Sep-2015.)
Assertion
Ref Expression
2oconcl (𝐴 ∈ 2𝑜 → (1𝑜𝐴) ∈ 2𝑜)

Proof of Theorem 2oconcl
StepHypRef Expression
1 elpri 3421 . . . . 5 (𝐴 ∈ {∅, 1𝑜} → (𝐴 = ∅ ∨ 𝐴 = 1𝑜))
2 difeq2 3084 . . . . . . . 8 (𝐴 = ∅ → (1𝑜𝐴) = (1𝑜 ∖ ∅))
3 dif0 3314 . . . . . . . 8 (1𝑜 ∖ ∅) = 1𝑜
42, 3syl6eq 2129 . . . . . . 7 (𝐴 = ∅ → (1𝑜𝐴) = 1𝑜)
5 difeq2 3084 . . . . . . . 8 (𝐴 = 1𝑜 → (1𝑜𝐴) = (1𝑜 ∖ 1𝑜))
6 difid 3312 . . . . . . . 8 (1𝑜 ∖ 1𝑜) = ∅
75, 6syl6eq 2129 . . . . . . 7 (𝐴 = 1𝑜 → (1𝑜𝐴) = ∅)
84, 7orim12i 708 . . . . . 6 ((𝐴 = ∅ ∨ 𝐴 = 1𝑜) → ((1𝑜𝐴) = 1𝑜 ∨ (1𝑜𝐴) = ∅))
98orcomd 680 . . . . 5 ((𝐴 = ∅ ∨ 𝐴 = 1𝑜) → ((1𝑜𝐴) = ∅ ∨ (1𝑜𝐴) = 1𝑜))
101, 9syl 14 . . . 4 (𝐴 ∈ {∅, 1𝑜} → ((1𝑜𝐴) = ∅ ∨ (1𝑜𝐴) = 1𝑜))
11 1on 6031 . . . . . 6 1𝑜 ∈ On
12 difexg 3919 . . . . . 6 (1𝑜 ∈ On → (1𝑜𝐴) ∈ V)
1311, 12ax-mp 7 . . . . 5 (1𝑜𝐴) ∈ V
1413elpr 3419 . . . 4 ((1𝑜𝐴) ∈ {∅, 1𝑜} ↔ ((1𝑜𝐴) = ∅ ∨ (1𝑜𝐴) = 1𝑜))
1510, 14sylibr 132 . . 3 (𝐴 ∈ {∅, 1𝑜} → (1𝑜𝐴) ∈ {∅, 1𝑜})
16 df2o3 6037 . . 3 2𝑜 = {∅, 1𝑜}
1715, 16syl6eleqr 2172 . 2 (𝐴 ∈ {∅, 1𝑜} → (1𝑜𝐴) ∈ 2𝑜)
1817, 16eleq2s 2173 1 (𝐴 ∈ 2𝑜 → (1𝑜𝐴) ∈ 2𝑜)
Colors of variables: wff set class
Syntax hints:  wi 4  wo 661   = wceq 1284  wcel 1433  Vcvv 2601  cdif 2970  c0 3251  {cpr 3399  Oncon0 4118  1𝑜c1o 6017  2𝑜c2o 6018
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-uni 3602  df-tr 3876  df-iord 4121  df-on 4123  df-suc 4126  df-1o 6024  df-2o 6025
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator