ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  el1o GIF version

Theorem el1o 6043
Description: Membership in ordinal one. (Contributed by NM, 5-Jan-2005.)
Assertion
Ref Expression
el1o (𝐴 ∈ 1𝑜𝐴 = ∅)

Proof of Theorem el1o
StepHypRef Expression
1 df1o2 6036 . . 3 1𝑜 = {∅}
21eleq2i 2145 . 2 (𝐴 ∈ 1𝑜𝐴 ∈ {∅})
3 0ex 3905 . . 3 ∅ ∈ V
43elsn2 3428 . 2 (𝐴 ∈ {∅} ↔ 𝐴 = ∅)
52, 4bitri 182 1 (𝐴 ∈ 1𝑜𝐴 = ∅)
Colors of variables: wff set class
Syntax hints:  wb 103   = wceq 1284  wcel 1433  c0 3251  {csn 3398  1𝑜c1o 6017
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-nul 3904
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-dif 2975  df-un 2977  df-nul 3252  df-sn 3404  df-suc 4126  df-1o 6024
This theorem is referenced by:  0lt1o  6046
  Copyright terms: Public domain W3C validator