![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > invdif | GIF version |
Description: Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.) |
Ref | Expression |
---|---|
invdif | ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2604 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | eldif 2982 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ 𝐵) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ 𝐵)) | |
3 | 1, 2 | mpbiran 881 | . . . 4 ⊢ (𝑥 ∈ (V ∖ 𝐵) ↔ ¬ 𝑥 ∈ 𝐵) |
4 | 3 | anbi2i 444 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (V ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) |
5 | elin 3155 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∩ (V ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ (V ∖ 𝐵))) | |
6 | eldif 2982 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
7 | 4, 5, 6 | 3bitr4i 210 | . 2 ⊢ (𝑥 ∈ (𝐴 ∩ (V ∖ 𝐵)) ↔ 𝑥 ∈ (𝐴 ∖ 𝐵)) |
8 | 7 | eqriv 2078 | 1 ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 102 = wceq 1284 ∈ wcel 1433 Vcvv 2601 ∖ cdif 2970 ∩ cin 2972 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-dif 2975 df-in 2979 |
This theorem is referenced by: indif2 3208 difundir 3217 difindir 3219 difdif2ss 3221 difun1 3224 difdifdirss 3327 nn0supp 8340 |
Copyright terms: Public domain | W3C validator |