ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  difsnss GIF version

Theorem difsnss 3531
Description: If we remove a single element from a class then put it back in, we end up with a subset of the original class. If equality is decidable, we can replace subset with equality as seen in nndifsnid 6103. (Contributed by Jim Kingdon, 10-Aug-2018.)
Assertion
Ref Expression
difsnss (𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ⊆ 𝐴)

Proof of Theorem difsnss
StepHypRef Expression
1 uncom 3116 . 2 ((𝐴 ∖ {𝐵}) ∪ {𝐵}) = ({𝐵} ∪ (𝐴 ∖ {𝐵}))
2 snssi 3529 . . 3 (𝐵𝐴 → {𝐵} ⊆ 𝐴)
3 undifss 3323 . . 3 ({𝐵} ⊆ 𝐴 ↔ ({𝐵} ∪ (𝐴 ∖ {𝐵})) ⊆ 𝐴)
42, 3sylib 120 . 2 (𝐵𝐴 → ({𝐵} ∪ (𝐴 ∖ {𝐵})) ⊆ 𝐴)
51, 4syl5eqss 3043 1 (𝐵𝐴 → ((𝐴 ∖ {𝐵}) ∪ {𝐵}) ⊆ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1433  cdif 2970  cun 2971  wss 2973  {csn 3398
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-sn 3404
This theorem is referenced by:  nndifsnid  6103  fidifsnid  6356
  Copyright terms: Public domain W3C validator