![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dtruex | GIF version |
Description: At least two sets exist (or in terms of first-order logic, the universe of discourse has two or more objects). Although dtruarb 3962 can also be summarized as "at least two sets exist", the difference is that dtruarb 3962 shows the existence of two sets which are not equal to each other, but this theorem says that given a specific 𝑦, we can construct a set 𝑥 which does not equal it. (Contributed by Jim Kingdon, 29-Dec-2018.) |
Ref | Expression |
---|---|
dtruex | ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2604 | . . . . 5 ⊢ 𝑦 ∈ V | |
2 | 1 | snex 3957 | . . . 4 ⊢ {𝑦} ∈ V |
3 | 2 | isseti 2607 | . . 3 ⊢ ∃𝑥 𝑥 = {𝑦} |
4 | elirrv 4291 | . . . . . . 7 ⊢ ¬ 𝑦 ∈ 𝑦 | |
5 | vsnid 3426 | . . . . . . . 8 ⊢ 𝑦 ∈ {𝑦} | |
6 | eleq2 2142 | . . . . . . . 8 ⊢ (𝑦 = {𝑦} → (𝑦 ∈ 𝑦 ↔ 𝑦 ∈ {𝑦})) | |
7 | 5, 6 | mpbiri 166 | . . . . . . 7 ⊢ (𝑦 = {𝑦} → 𝑦 ∈ 𝑦) |
8 | 4, 7 | mto 620 | . . . . . 6 ⊢ ¬ 𝑦 = {𝑦} |
9 | eqtr 2098 | . . . . . 6 ⊢ ((𝑦 = 𝑥 ∧ 𝑥 = {𝑦}) → 𝑦 = {𝑦}) | |
10 | 8, 9 | mto 620 | . . . . 5 ⊢ ¬ (𝑦 = 𝑥 ∧ 𝑥 = {𝑦}) |
11 | ancom 262 | . . . . 5 ⊢ ((𝑦 = 𝑥 ∧ 𝑥 = {𝑦}) ↔ (𝑥 = {𝑦} ∧ 𝑦 = 𝑥)) | |
12 | 10, 11 | mtbi 627 | . . . 4 ⊢ ¬ (𝑥 = {𝑦} ∧ 𝑦 = 𝑥) |
13 | 12 | imnani 657 | . . 3 ⊢ (𝑥 = {𝑦} → ¬ 𝑦 = 𝑥) |
14 | 3, 13 | eximii 1533 | . 2 ⊢ ∃𝑥 ¬ 𝑦 = 𝑥 |
15 | equcom 1633 | . . . 4 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
16 | 15 | notbii 626 | . . 3 ⊢ (¬ 𝑦 = 𝑥 ↔ ¬ 𝑥 = 𝑦) |
17 | 16 | exbii 1536 | . 2 ⊢ (∃𝑥 ¬ 𝑦 = 𝑥 ↔ ∃𝑥 ¬ 𝑥 = 𝑦) |
18 | 14, 17 | mpbi 143 | 1 ⊢ ∃𝑥 ¬ 𝑥 = 𝑦 |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 ∧ wa 102 = wceq 1284 ∃wex 1421 ∈ wcel 1433 {csn 3398 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-setind 4280 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-v 2603 df-dif 2975 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 |
This theorem is referenced by: dtru 4303 eunex 4304 brprcneu 5191 |
Copyright terms: Public domain | W3C validator |