![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ecased | GIF version |
Description: Deduction form of disjunctive syllogism. (Contributed by Jim Kingdon, 9-Dec-2017.) |
Ref | Expression |
---|---|
ecased.1 | ⊢ (𝜑 → ¬ 𝜒) |
ecased.2 | ⊢ (𝜑 → (𝜓 ∨ 𝜒)) |
Ref | Expression |
---|---|
ecased | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ecased.1 | . . 3 ⊢ (𝜑 → ¬ 𝜒) | |
2 | ecased.2 | . . 3 ⊢ (𝜑 → (𝜓 ∨ 𝜒)) | |
3 | 1, 2 | jca 300 | . 2 ⊢ (𝜑 → (¬ 𝜒 ∧ (𝜓 ∨ 𝜒))) |
4 | orel2 677 | . . 3 ⊢ (¬ 𝜒 → ((𝜓 ∨ 𝜒) → 𝜓)) | |
5 | 4 | imp 122 | . 2 ⊢ ((¬ 𝜒 ∧ (𝜓 ∨ 𝜒)) → 𝜓) |
6 | 3, 5 | syl 14 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 102 ∨ wo 661 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in2 577 ax-io 662 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: ecase23d 1281 preleq 4298 ordsuc 4306 reg3exmidlemwe 4321 sotri3 4743 diffisn 6377 onunsnss 6383 suplub2ti 6414 addnqprlemfl 6749 addnqprlemfu 6750 mulnqprlemfl 6765 mulnqprlemfu 6766 addcanprleml 6804 addcanprlemu 6805 cauappcvgprlemladdru 6846 cauappcvgprlemladdrl 6847 caucvgprlemladdrl 6868 caucvgprprlemaddq 6898 ltletr 7200 apreap 7687 ltleap 7730 uzm1 8649 xrltletr 8877 ltabs 9973 bezoutlemmain 10387 |
Copyright terms: Public domain | W3C validator |