![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uzm1 | GIF version |
Description: Choices for an element of an upper interval of integers. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
uzm1 | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzle 8631 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ≤ 𝑁) | |
2 | eluzel2 8624 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
3 | 2 | zred 8469 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℝ) |
4 | eluzelz 8628 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
5 | 4 | zred 8469 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℝ) |
6 | 3, 5 | lenltd 7227 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 ≤ 𝑁 ↔ ¬ 𝑁 < 𝑀)) |
7 | 1, 6 | mpbid 145 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ¬ 𝑁 < 𝑀) |
8 | ztri3or 8394 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀)) | |
9 | 2, 4, 8 | syl2anc 403 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀)) |
10 | df-3or 920 | . . . . 5 ⊢ ((𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀) ↔ ((𝑀 < 𝑁 ∨ 𝑀 = 𝑁) ∨ 𝑁 < 𝑀)) | |
11 | 9, 10 | sylib 120 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀 < 𝑁 ∨ 𝑀 = 𝑁) ∨ 𝑁 < 𝑀)) |
12 | 7, 11 | ecased 1280 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 ∨ 𝑀 = 𝑁)) |
13 | 12 | orcomd 680 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 = 𝑁 ∨ 𝑀 < 𝑁)) |
14 | eqcom 2083 | . . . . 5 ⊢ (𝑀 = 𝑁 ↔ 𝑁 = 𝑀) | |
15 | 14 | biimpi 118 | . . . 4 ⊢ (𝑀 = 𝑁 → 𝑁 = 𝑀) |
16 | 15 | a1i 9 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 = 𝑁 → 𝑁 = 𝑀)) |
17 | zltlem1 8408 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) | |
18 | 2, 4, 17 | syl2anc 403 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 ↔ 𝑀 ≤ (𝑁 − 1))) |
19 | 1zzd 8378 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 1 ∈ ℤ) | |
20 | 4, 19 | zsubcld 8474 | . . . . . 6 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 − 1) ∈ ℤ) |
21 | eluz 8632 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → ((𝑁 − 1) ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ (𝑁 − 1))) | |
22 | 2, 20, 21 | syl2anc 403 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 − 1) ∈ (ℤ≥‘𝑀) ↔ 𝑀 ≤ (𝑁 − 1))) |
23 | 18, 22 | bitr4d 189 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 ↔ (𝑁 − 1) ∈ (ℤ≥‘𝑀))) |
24 | 23 | biimpd 142 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀 < 𝑁 → (𝑁 − 1) ∈ (ℤ≥‘𝑀))) |
25 | 16, 24 | orim12d 732 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀 = 𝑁 ∨ 𝑀 < 𝑁) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀)))) |
26 | 13, 25 | mpd 13 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 = 𝑀 ∨ (𝑁 − 1) ∈ (ℤ≥‘𝑀))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 103 ∨ wo 661 ∨ w3o 918 = wceq 1284 ∈ wcel 1433 class class class wbr 3785 ‘cfv 4922 (class class class)co 5532 1c1 6982 < clt 7153 ≤ cle 7154 − cmin 7279 ℤcz 8351 ℤ≥cuz 8619 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-ltadd 7092 |
This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-n0 8289 df-z 8352 df-uz 8620 |
This theorem is referenced by: uzp1 8652 fzm1 9117 iiserex 10177 |
Copyright terms: Public domain | W3C validator |