ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulnqprlemfl GIF version

Theorem mulnqprlemfl 6765
Description: Lemma for mulnqpr 6767. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
Assertion
Ref Expression
mulnqprlemfl ((𝐴Q𝐵Q) → (1st ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) ⊆ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
Distinct variable groups:   𝐴,𝑙,𝑢   𝐵,𝑙,𝑢

Proof of Theorem mulnqprlemfl
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 mulnqprlemru 6764 . . . . . 6 ((𝐴Q𝐵Q) → (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ⊆ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩))
2 ltsonq 6588 . . . . . . . . 9 <Q Or Q
3 mulclnq 6566 . . . . . . . . 9 ((𝐴Q𝐵Q) → (𝐴 ·Q 𝐵) ∈ Q)
4 sonr 4072 . . . . . . . . 9 (( <Q Or Q ∧ (𝐴 ·Q 𝐵) ∈ Q) → ¬ (𝐴 ·Q 𝐵) <Q (𝐴 ·Q 𝐵))
52, 3, 4sylancr 405 . . . . . . . 8 ((𝐴Q𝐵Q) → ¬ (𝐴 ·Q 𝐵) <Q (𝐴 ·Q 𝐵))
6 ltrelnq 6555 . . . . . . . . . . . 12 <Q ⊆ (Q × Q)
76brel 4410 . . . . . . . . . . 11 ((𝐴 ·Q 𝐵) <Q (𝐴 ·Q 𝐵) → ((𝐴 ·Q 𝐵) ∈ Q ∧ (𝐴 ·Q 𝐵) ∈ Q))
87simpld 110 . . . . . . . . . 10 ((𝐴 ·Q 𝐵) <Q (𝐴 ·Q 𝐵) → (𝐴 ·Q 𝐵) ∈ Q)
9 elex 2610 . . . . . . . . . 10 ((𝐴 ·Q 𝐵) ∈ Q → (𝐴 ·Q 𝐵) ∈ V)
108, 9syl 14 . . . . . . . . 9 ((𝐴 ·Q 𝐵) <Q (𝐴 ·Q 𝐵) → (𝐴 ·Q 𝐵) ∈ V)
11 breq2 3789 . . . . . . . . 9 (𝑢 = (𝐴 ·Q 𝐵) → ((𝐴 ·Q 𝐵) <Q 𝑢 ↔ (𝐴 ·Q 𝐵) <Q (𝐴 ·Q 𝐵)))
1210, 11elab3 2745 . . . . . . . 8 ((𝐴 ·Q 𝐵) ∈ {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢} ↔ (𝐴 ·Q 𝐵) <Q (𝐴 ·Q 𝐵))
135, 12sylnibr 634 . . . . . . 7 ((𝐴Q𝐵Q) → ¬ (𝐴 ·Q 𝐵) ∈ {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢})
14 ltnqex 6739 . . . . . . . . 9 {𝑙𝑙 <Q (𝐴 ·Q 𝐵)} ∈ V
15 gtnqex 6740 . . . . . . . . 9 {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢} ∈ V
1614, 15op2nd 5794 . . . . . . . 8 (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) = {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}
1716eleq2i 2145 . . . . . . 7 ((𝐴 ·Q 𝐵) ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) ↔ (𝐴 ·Q 𝐵) ∈ {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢})
1813, 17sylnibr 634 . . . . . 6 ((𝐴Q𝐵Q) → ¬ (𝐴 ·Q 𝐵) ∈ (2nd ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩))
191, 18ssneldd 3002 . . . . 5 ((𝐴Q𝐵Q) → ¬ (𝐴 ·Q 𝐵) ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
2019adantr 270 . . . 4 (((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩)) → ¬ (𝐴 ·Q 𝐵) ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
21 nqprlu 6737 . . . . . . 7 (𝐴Q → ⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P)
22 nqprlu 6737 . . . . . . 7 (𝐵Q → ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ∈ P)
23 mulclpr 6762 . . . . . . 7 ((⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ∈ P ∧ ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩ ∈ P) → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) ∈ P)
2421, 22, 23syl2an 283 . . . . . 6 ((𝐴Q𝐵Q) → (⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) ∈ P)
25 prop 6665 . . . . . 6 ((⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩) ∈ P → ⟨(1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)), (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))⟩ ∈ P)
2624, 25syl 14 . . . . 5 ((𝐴Q𝐵Q) → ⟨(1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)), (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))⟩ ∈ P)
27 vex 2604 . . . . . . 7 𝑟 ∈ V
28 breq1 3788 . . . . . . 7 (𝑙 = 𝑟 → (𝑙 <Q (𝐴 ·Q 𝐵) ↔ 𝑟 <Q (𝐴 ·Q 𝐵)))
2914, 15op1st 5793 . . . . . . 7 (1st ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) = {𝑙𝑙 <Q (𝐴 ·Q 𝐵)}
3027, 28, 29elab2 2741 . . . . . 6 (𝑟 ∈ (1st ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) ↔ 𝑟 <Q (𝐴 ·Q 𝐵))
3130biimpi 118 . . . . 5 (𝑟 ∈ (1st ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) → 𝑟 <Q (𝐴 ·Q 𝐵))
32 prloc 6681 . . . . 5 ((⟨(1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)), (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))⟩ ∈ P𝑟 <Q (𝐴 ·Q 𝐵)) → (𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ∨ (𝐴 ·Q 𝐵) ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))))
3326, 31, 32syl2an 283 . . . 4 (((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩)) → (𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)) ∨ (𝐴 ·Q 𝐵) ∈ (2nd ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))))
3420, 33ecased 1280 . . 3 (((𝐴Q𝐵Q) ∧ 𝑟 ∈ (1st ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩)) → 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
3534ex 113 . 2 ((𝐴Q𝐵Q) → (𝑟 ∈ (1st ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) → 𝑟 ∈ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩))))
3635ssrdv 3005 1 ((𝐴Q𝐵Q) → (1st ‘⟨{𝑙𝑙 <Q (𝐴 ·Q 𝐵)}, {𝑢 ∣ (𝐴 ·Q 𝐵) <Q 𝑢}⟩) ⊆ (1st ‘(⟨{𝑙𝑙 <Q 𝐴}, {𝑢𝐴 <Q 𝑢}⟩ ·P ⟨{𝑙𝑙 <Q 𝐵}, {𝑢𝐵 <Q 𝑢}⟩)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wo 661  wcel 1433  {cab 2067  Vcvv 2601  wss 2973  cop 3401   class class class wbr 3785   Or wor 4050  cfv 4922  (class class class)co 5532  1st c1st 5785  2nd c2nd 5786  Qcnq 6470   ·Q cmq 6473   <Q cltq 6475  Pcnp 6481   ·P cmp 6484
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-imp 6659
This theorem is referenced by:  mulnqpr  6767
  Copyright terms: Public domain W3C validator