ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eldmg GIF version

Theorem eldmg 4548
Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
eldmg (𝐴𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem eldmg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq1 3788 . . 3 (𝑥 = 𝐴 → (𝑥𝐵𝑦𝐴𝐵𝑦))
21exbidv 1746 . 2 (𝑥 = 𝐴 → (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑦 𝐴𝐵𝑦))
3 df-dm 4373 . 2 dom 𝐵 = {𝑥 ∣ ∃𝑦 𝑥𝐵𝑦}
42, 3elab2g 2740 1 (𝐴𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103   = wceq 1284  wex 1421  wcel 1433   class class class wbr 3785  dom cdm 4363
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-dm 4373
This theorem is referenced by:  eldm2g  4549  eldm  4550  breldmg  4559  releldmb  4589  funeu  4946  fneu  5023  ndmfvg  5225  erref  6149  ecdmn0m  6171  shftdm  9710
  Copyright terms: Public domain W3C validator