ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecdmn0m GIF version

Theorem ecdmn0m 6171
Description: A representative of an inhabited equivalence class belongs to the domain of the equivalence relation. (Contributed by Jim Kingdon, 21-Aug-2019.)
Assertion
Ref Expression
ecdmn0m (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅)
Distinct variable groups:   𝑥,𝑅   𝑥,𝐴

Proof of Theorem ecdmn0m
StepHypRef Expression
1 elex 2610 . 2 (𝐴 ∈ dom 𝑅𝐴 ∈ V)
2 ecexr 6134 . . 3 (𝑥 ∈ [𝐴]𝑅𝐴 ∈ V)
32exlimiv 1529 . 2 (∃𝑥 𝑥 ∈ [𝐴]𝑅𝐴 ∈ V)
4 eldmg 4548 . . 3 (𝐴 ∈ V → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
5 vex 2604 . . . . 5 𝑥 ∈ V
6 elecg 6167 . . . . 5 ((𝑥 ∈ V ∧ 𝐴 ∈ V) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
75, 6mpan 414 . . . 4 (𝐴 ∈ V → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
87exbidv 1746 . . 3 (𝐴 ∈ V → (∃𝑥 𝑥 ∈ [𝐴]𝑅 ↔ ∃𝑥 𝐴𝑅𝑥))
94, 8bitr4d 189 . 2 (𝐴 ∈ V → (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅))
101, 3, 9pm5.21nii 652 1 (𝐴 ∈ dom 𝑅 ↔ ∃𝑥 𝑥 ∈ [𝐴]𝑅)
Colors of variables: wff set class
Syntax hints:  wb 103  wex 1421  wcel 1433  Vcvv 2601   class class class wbr 3785  dom cdm 4363  [cec 6127
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-xp 4369  df-cnv 4371  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-ec 6131
This theorem is referenced by:  ereldm  6172  elqsn0m  6197  ecelqsdm  6199
  Copyright terms: Public domain W3C validator