![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elexi | GIF version |
Description: If a class is a member of another class, it is a set. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
elisseti.1 | ⊢ 𝐴 ∈ 𝐵 |
Ref | Expression |
---|---|
elexi | ⊢ 𝐴 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisseti.1 | . 2 ⊢ 𝐴 ∈ 𝐵 | |
2 | elex 2610 | . 2 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ V) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ 𝐴 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1433 Vcvv 2601 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-v 2603 |
This theorem is referenced by: onunisuci 4187 ordsoexmid 4305 fnoei 6055 oeiexg 6056 endisj 6321 pm54.43 6459 indpi 6532 prarloclemarch2 6609 prarloclemlt 6683 opelreal 6996 elreal 6997 elreal2 6999 eqresr 7004 c0ex 7113 1ex 7114 2ex 8111 3ex 8115 pnfex 8847 elxr 8850 |
Copyright terms: Public domain | W3C validator |