![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > endisj | GIF version |
Description: Any two sets are equinumerous to disjoint sets. Exercise 4.39 of [Mendelson] p. 255. (Contributed by NM, 16-Apr-2004.) |
Ref | Expression |
---|---|
endisj.1 | ⊢ 𝐴 ∈ V |
endisj.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
endisj | ⊢ ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | endisj.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | 0ex 3905 | . . . 4 ⊢ ∅ ∈ V | |
3 | 1, 2 | xpsnen 6318 | . . 3 ⊢ (𝐴 × {∅}) ≈ 𝐴 |
4 | endisj.2 | . . . 4 ⊢ 𝐵 ∈ V | |
5 | 1on 6031 | . . . . 5 ⊢ 1𝑜 ∈ On | |
6 | 5 | elexi 2611 | . . . 4 ⊢ 1𝑜 ∈ V |
7 | 4, 6 | xpsnen 6318 | . . 3 ⊢ (𝐵 × {1𝑜}) ≈ 𝐵 |
8 | 3, 7 | pm3.2i 266 | . 2 ⊢ ((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1𝑜}) ≈ 𝐵) |
9 | xp01disj 6040 | . 2 ⊢ ((𝐴 × {∅}) ∩ (𝐵 × {1𝑜})) = ∅ | |
10 | p0ex 3959 | . . . 4 ⊢ {∅} ∈ V | |
11 | 1, 10 | xpex 4471 | . . 3 ⊢ (𝐴 × {∅}) ∈ V |
12 | 6 | snex 3957 | . . . 4 ⊢ {1𝑜} ∈ V |
13 | 4, 12 | xpex 4471 | . . 3 ⊢ (𝐵 × {1𝑜}) ∈ V |
14 | breq1 3788 | . . . . 5 ⊢ (𝑥 = (𝐴 × {∅}) → (𝑥 ≈ 𝐴 ↔ (𝐴 × {∅}) ≈ 𝐴)) | |
15 | breq1 3788 | . . . . 5 ⊢ (𝑦 = (𝐵 × {1𝑜}) → (𝑦 ≈ 𝐵 ↔ (𝐵 × {1𝑜}) ≈ 𝐵)) | |
16 | 14, 15 | bi2anan9 570 | . . . 4 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1𝑜})) → ((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ↔ ((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1𝑜}) ≈ 𝐵))) |
17 | ineq12 3162 | . . . . 5 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1𝑜})) → (𝑥 ∩ 𝑦) = ((𝐴 × {∅}) ∩ (𝐵 × {1𝑜}))) | |
18 | 17 | eqeq1d 2089 | . . . 4 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1𝑜})) → ((𝑥 ∩ 𝑦) = ∅ ↔ ((𝐴 × {∅}) ∩ (𝐵 × {1𝑜})) = ∅)) |
19 | 16, 18 | anbi12d 456 | . . 3 ⊢ ((𝑥 = (𝐴 × {∅}) ∧ 𝑦 = (𝐵 × {1𝑜})) → (((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) ↔ (((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1𝑜}) ≈ 𝐵) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1𝑜})) = ∅))) |
20 | 11, 13, 19 | spc2ev 2693 | . 2 ⊢ ((((𝐴 × {∅}) ≈ 𝐴 ∧ (𝐵 × {1𝑜}) ≈ 𝐵) ∧ ((𝐴 × {∅}) ∩ (𝐵 × {1𝑜})) = ∅) → ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅)) |
21 | 8, 9, 20 | mp2an 416 | 1 ⊢ ∃𝑥∃𝑦((𝑥 ≈ 𝐴 ∧ 𝑦 ≈ 𝐵) ∧ (𝑥 ∩ 𝑦) = ∅) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 = wceq 1284 ∃wex 1421 ∈ wcel 1433 Vcvv 2601 ∩ cin 2972 ∅c0 3251 {csn 3398 class class class wbr 3785 Oncon0 4118 × cxp 4361 1𝑜c1o 6017 ≈ cen 6242 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-mpt 3841 df-tr 3876 df-id 4048 df-iord 4121 df-on 4123 df-suc 4126 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 df-1o 6024 df-en 6245 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |