![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elfv | GIF version |
Description: Membership in a function value. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
elfv | ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fv2 5193 | . . 3 ⊢ (𝐹‘𝐵) = ∪ {𝑥 ∣ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥)} | |
2 | 1 | eleq2i 2145 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ 𝐴 ∈ ∪ {𝑥 ∣ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥)}) |
3 | eluniab 3613 | . 2 ⊢ (𝐴 ∈ ∪ {𝑥 ∣ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥)} ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥))) | |
4 | 2, 3 | bitri 182 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ↔ wb 103 ∀wal 1282 ∃wex 1421 ∈ wcel 1433 {cab 2067 ∪ cuni 3601 class class class wbr 3785 ‘cfv 4922 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rex 2354 df-v 2603 df-sn 3404 df-uni 3602 df-iota 4887 df-fv 4930 |
This theorem is referenced by: fv3 5218 relelfvdm 5226 |
Copyright terms: Public domain | W3C validator |