| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relelfvdm | GIF version | ||
| Description: If a function value has a member, the argument belongs to the domain. (Contributed by Jim Kingdon, 22-Jan-2019.) |
| Ref | Expression |
|---|---|
| relelfvdm | ⊢ ((Rel 𝐹 ∧ 𝐴 ∈ (𝐹‘𝐵)) → 𝐵 ∈ dom 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfv 5196 | . . . . . 6 ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥))) | |
| 2 | exsimpr 1549 | . . . . . 6 ⊢ (∃𝑥(𝐴 ∈ 𝑥 ∧ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥)) → ∃𝑥∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥)) | |
| 3 | 1, 2 | sylbi 119 | . . . . 5 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ∃𝑥∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥)) |
| 4 | equsb1 1708 | . . . . . . . 8 ⊢ [𝑥 / 𝑦]𝑦 = 𝑥 | |
| 5 | spsbbi 1765 | . . . . . . . 8 ⊢ (∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥) → ([𝑥 / 𝑦]𝐵𝐹𝑦 ↔ [𝑥 / 𝑦]𝑦 = 𝑥)) | |
| 6 | 4, 5 | mpbiri 166 | . . . . . . 7 ⊢ (∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥) → [𝑥 / 𝑦]𝐵𝐹𝑦) |
| 7 | nfv 1461 | . . . . . . . 8 ⊢ Ⅎ𝑦 𝐵𝐹𝑥 | |
| 8 | breq2 3789 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (𝐵𝐹𝑦 ↔ 𝐵𝐹𝑥)) | |
| 9 | 7, 8 | sbie 1714 | . . . . . . 7 ⊢ ([𝑥 / 𝑦]𝐵𝐹𝑦 ↔ 𝐵𝐹𝑥) |
| 10 | 6, 9 | sylib 120 | . . . . . 6 ⊢ (∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥) → 𝐵𝐹𝑥) |
| 11 | 10 | eximi 1531 | . . . . 5 ⊢ (∃𝑥∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥) → ∃𝑥 𝐵𝐹𝑥) |
| 12 | 3, 11 | syl 14 | . . . 4 ⊢ (𝐴 ∈ (𝐹‘𝐵) → ∃𝑥 𝐵𝐹𝑥) |
| 13 | 12 | anim2i 334 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐴 ∈ (𝐹‘𝐵)) → (Rel 𝐹 ∧ ∃𝑥 𝐵𝐹𝑥)) |
| 14 | 19.42v 1827 | . . 3 ⊢ (∃𝑥(Rel 𝐹 ∧ 𝐵𝐹𝑥) ↔ (Rel 𝐹 ∧ ∃𝑥 𝐵𝐹𝑥)) | |
| 15 | 13, 14 | sylibr 132 | . 2 ⊢ ((Rel 𝐹 ∧ 𝐴 ∈ (𝐹‘𝐵)) → ∃𝑥(Rel 𝐹 ∧ 𝐵𝐹𝑥)) |
| 16 | releldm 4587 | . . 3 ⊢ ((Rel 𝐹 ∧ 𝐵𝐹𝑥) → 𝐵 ∈ dom 𝐹) | |
| 17 | 16 | exlimiv 1529 | . 2 ⊢ (∃𝑥(Rel 𝐹 ∧ 𝐵𝐹𝑥) → 𝐵 ∈ dom 𝐹) |
| 18 | 15, 17 | syl 14 | 1 ⊢ ((Rel 𝐹 ∧ 𝐴 ∈ (𝐹‘𝐵)) → 𝐵 ∈ dom 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∀wal 1282 ∃wex 1421 ∈ wcel 1433 [wsb 1685 class class class wbr 3785 dom cdm 4363 Rel wrel 4368 ‘cfv 4922 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-xp 4369 df-rel 4370 df-dm 4373 df-iota 4887 df-fv 4930 |
| This theorem is referenced by: elmpt2cl 5718 mpt2xopn0yelv 5877 eluzel2 8624 |
| Copyright terms: Public domain | W3C validator |