| Step | Hyp | Ref
| Expression |
| 1 | | neldifsnd 3520 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴}))) → ¬ 𝐴 ∈ (V ∖ {𝐴})) |
| 2 | | simp1 938 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → 𝐴 ∈ 𝐴) |
| 3 | | eleq1 2141 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) |
| 4 | | eleq1 2141 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝐴 → (𝑦 ∈ (V ∖ {𝐴}) ↔ 𝐴 ∈ (V ∖ {𝐴}))) |
| 5 | 3, 4 | imbi12d 232 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝐴 → ((𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) ↔ (𝐴 ∈ 𝑥 → 𝐴 ∈ (V ∖ {𝐴})))) |
| 6 | 5 | spcgv 2685 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ 𝑥 → (∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) → (𝐴 ∈ 𝑥 → 𝐴 ∈ (V ∖ {𝐴})))) |
| 7 | 6 | pm2.43b 51 |
. . . . . . . . . . . . 13
⊢
(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) → (𝐴 ∈ 𝑥 → 𝐴 ∈ (V ∖ {𝐴}))) |
| 8 | 7 | 3ad2ant2 960 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → (𝐴 ∈ 𝑥 → 𝐴 ∈ (V ∖ {𝐴}))) |
| 9 | | eleq2 2142 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐴 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝐴)) |
| 10 | 9 | imbi1d 229 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐴 → ((𝐴 ∈ 𝑥 → 𝐴 ∈ (V ∖ {𝐴})) ↔ (𝐴 ∈ 𝐴 → 𝐴 ∈ (V ∖ {𝐴})))) |
| 11 | 10 | 3ad2ant3 961 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → ((𝐴 ∈ 𝑥 → 𝐴 ∈ (V ∖ {𝐴})) ↔ (𝐴 ∈ 𝐴 → 𝐴 ∈ (V ∖ {𝐴})))) |
| 12 | 8, 11 | mpbid 145 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → (𝐴 ∈ 𝐴 → 𝐴 ∈ (V ∖ {𝐴}))) |
| 13 | 2, 12 | mpd 13 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) ∧ 𝑥 = 𝐴) → 𝐴 ∈ (V ∖ {𝐴})) |
| 14 | 13 | 3expia 1140 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴}))) → (𝑥 = 𝐴 → 𝐴 ∈ (V ∖ {𝐴}))) |
| 15 | 1, 14 | mtod 621 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴}))) → ¬ 𝑥 = 𝐴) |
| 16 | | vex 2604 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
| 17 | | eldif 2982 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (V ∖ {𝐴}) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ {𝐴})) |
| 18 | 16, 17 | mpbiran 881 |
. . . . . . . . 9
⊢ (𝑥 ∈ (V ∖ {𝐴}) ↔ ¬ 𝑥 ∈ {𝐴}) |
| 19 | | velsn 3415 |
. . . . . . . . 9
⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) |
| 20 | 18, 19 | xchbinx 639 |
. . . . . . . 8
⊢ (𝑥 ∈ (V ∖ {𝐴}) ↔ ¬ 𝑥 = 𝐴) |
| 21 | 15, 20 | sylibr 132 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴}))) → 𝑥 ∈ (V ∖ {𝐴})) |
| 22 | 21 | ex 113 |
. . . . . 6
⊢ (𝐴 ∈ 𝐴 → (∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) → 𝑥 ∈ (V ∖ {𝐴}))) |
| 23 | 22 | alrimiv 1795 |
. . . . 5
⊢ (𝐴 ∈ 𝐴 → ∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) → 𝑥 ∈ (V ∖ {𝐴}))) |
| 24 | | df-ral 2353 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) ↔ ∀𝑦(𝑦 ∈ 𝑥 → [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}))) |
| 25 | | clelsb3 2183 |
. . . . . . . . . 10
⊢ ([𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) ↔ 𝑦 ∈ (V ∖ {𝐴})) |
| 26 | 25 | imbi2i 224 |
. . . . . . . . 9
⊢ ((𝑦 ∈ 𝑥 → [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴})) ↔ (𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴}))) |
| 27 | 26 | albii 1399 |
. . . . . . . 8
⊢
(∀𝑦(𝑦 ∈ 𝑥 → [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴})) ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴}))) |
| 28 | 24, 27 | bitri 182 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴}))) |
| 29 | 28 | imbi1i 236 |
. . . . . 6
⊢
((∀𝑦 ∈
𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) → 𝑥 ∈ (V ∖ {𝐴})) ↔ (∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) → 𝑥 ∈ (V ∖ {𝐴}))) |
| 30 | 29 | albii 1399 |
. . . . 5
⊢
(∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) → 𝑥 ∈ (V ∖ {𝐴})) ↔ ∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ (V ∖ {𝐴})) → 𝑥 ∈ (V ∖ {𝐴}))) |
| 31 | 23, 30 | sylibr 132 |
. . . 4
⊢ (𝐴 ∈ 𝐴 → ∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) → 𝑥 ∈ (V ∖ {𝐴}))) |
| 32 | | ax-setind 4280 |
. . . 4
⊢
(∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥]𝑥 ∈ (V ∖ {𝐴}) → 𝑥 ∈ (V ∖ {𝐴})) → ∀𝑥 𝑥 ∈ (V ∖ {𝐴})) |
| 33 | 31, 32 | syl 14 |
. . 3
⊢ (𝐴 ∈ 𝐴 → ∀𝑥 𝑥 ∈ (V ∖ {𝐴})) |
| 34 | | eleq1 2141 |
. . . 4
⊢ (𝑥 = 𝐴 → (𝑥 ∈ (V ∖ {𝐴}) ↔ 𝐴 ∈ (V ∖ {𝐴}))) |
| 35 | 34 | spcgv 2685 |
. . 3
⊢ (𝐴 ∈ 𝐴 → (∀𝑥 𝑥 ∈ (V ∖ {𝐴}) → 𝐴 ∈ (V ∖ {𝐴}))) |
| 36 | 33, 35 | mpd 13 |
. 2
⊢ (𝐴 ∈ 𝐴 → 𝐴 ∈ (V ∖ {𝐴})) |
| 37 | | neldifsnd 3520 |
. 2
⊢ (𝐴 ∈ 𝐴 → ¬ 𝐴 ∈ (V ∖ {𝐴})) |
| 38 | 36, 37 | pm2.65i 600 |
1
⊢ ¬
𝐴 ∈ 𝐴 |