| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elrabsf | GIF version | ||
| Description: Membership in a restricted class abstraction, expressed with explicit class substitution. (The variation elrabf 2747 has implicit substitution). The hypothesis specifies that 𝑥 must not be a free variable in 𝐵. (Contributed by NM, 30-Sep-2003.) (Proof shortened by Mario Carneiro, 13-Oct-2016.) |
| Ref | Expression |
|---|---|
| elrabsf.1 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| elrabsf | ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfsbcq 2817 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
| 2 | elrabsf.1 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 3 | nfcv 2219 | . . 3 ⊢ Ⅎ𝑦𝐵 | |
| 4 | nfv 1461 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 5 | nfsbc1v 2833 | . . 3 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
| 6 | sbceq1a 2824 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 7 | 2, 3, 4, 5, 6 | cbvrab 2599 | . 2 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑦 ∈ 𝐵 ∣ [𝑦 / 𝑥]𝜑} |
| 8 | 1, 7 | elrab2 2751 | 1 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 102 ↔ wb 103 ∈ wcel 1433 Ⅎwnfc 2206 {crab 2352 [wsbc 2815 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-rab 2357 df-v 2603 df-sbc 2816 |
| This theorem is referenced by: mpt2xopovel 5879 zsupcllemstep 10341 infssuzex 10345 |
| Copyright terms: Public domain | W3C validator |