ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrabsf Unicode version

Theorem elrabsf 2852
Description: Membership in a restricted class abstraction, expressed with explicit class substitution. (The variation elrabf 2747 has implicit substitution). The hypothesis specifies that 
x must not be a free variable in  B. (Contributed by NM, 30-Sep-2003.) (Proof shortened by Mario Carneiro, 13-Oct-2016.)
Hypothesis
Ref Expression
elrabsf.1  |-  F/_ x B
Assertion
Ref Expression
elrabsf  |-  ( A  e.  { x  e.  B  |  ph }  <->  ( A  e.  B  /\  [. A  /  x ]. ph ) )

Proof of Theorem elrabsf
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 2817 . 2  |-  ( y  =  A  ->  ( [. y  /  x ]. ph  <->  [. A  /  x ]. ph ) )
2 elrabsf.1 . . 3  |-  F/_ x B
3 nfcv 2219 . . 3  |-  F/_ y B
4 nfv 1461 . . 3  |-  F/ y
ph
5 nfsbc1v 2833 . . 3  |-  F/ x [. y  /  x ]. ph
6 sbceq1a 2824 . . 3  |-  ( x  =  y  ->  ( ph 
<-> 
[. y  /  x ]. ph ) )
72, 3, 4, 5, 6cbvrab 2599 . 2  |-  { x  e.  B  |  ph }  =  { y  e.  B  |  [. y  /  x ]. ph }
81, 7elrab2 2751 1  |-  ( A  e.  { x  e.  B  |  ph }  <->  ( A  e.  B  /\  [. A  /  x ]. ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    e. wcel 1433   F/_wnfc 2206   {crab 2352   [.wsbc 2815
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rab 2357  df-v 2603  df-sbc 2816
This theorem is referenced by:  mpt2xopovel  5879  zsupcllemstep  10341  infssuzex  10345
  Copyright terms: Public domain W3C validator