ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrab2 GIF version

Theorem elrab2 2751
Description: Membership in a class abstraction, using implicit substitution. (Contributed by NM, 2-Nov-2006.)
Hypotheses
Ref Expression
elrab2.1 (𝑥 = 𝐴 → (𝜑𝜓))
elrab2.2 𝐶 = {𝑥𝐵𝜑}
Assertion
Ref Expression
elrab2 (𝐴𝐶 ↔ (𝐴𝐵𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)

Proof of Theorem elrab2
StepHypRef Expression
1 elrab2.2 . . 3 𝐶 = {𝑥𝐵𝜑}
21eleq2i 2145 . 2 (𝐴𝐶𝐴 ∈ {𝑥𝐵𝜑})
3 elrab2.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
43elrab 2749 . 2 (𝐴 ∈ {𝑥𝐵𝜑} ↔ (𝐴𝐵𝜓))
52, 4bitri 182 1 (𝐴𝐶 ↔ (𝐴𝐵𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  {crab 2352
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rab 2357  df-v 2603
This theorem is referenced by:  elrabsf  2852  pwnss  3933  regexmidlemm  4275  regexmidlem1  4276  reg2exmidlema  4277  tfis  4324  ltexprlemell  6788  ltexprlemelu  6789  cauappcvgprlemm  6835  cauappcvgprlemopl  6836  cauappcvgprlemlol  6837  cauappcvgprlemopu  6838  cauappcvgprlemupu  6839  cauappcvgprlemdisj  6841  cauappcvgprlemloc  6842  cauappcvgprlemladdfu  6844  cauappcvgprlemladdfl  6845  cauappcvgprlemladdru  6846  cauappcvgprlemladdrl  6847  cauappcvgprlem2  6850  caucvgprlemm  6858  caucvgprlemopl  6859  caucvgprlemlol  6860  caucvgprlemopu  6861  caucvgprlemupu  6862  caucvgprlemdisj  6864  caucvgprlemloc  6865  caucvgprlemladdfu  6867  caucvgprlem2  6870  caucvgprprlemell  6875  caucvgprprlemelu  6876  caucvgprprlemml  6884  caucvgprprlemmu  6885  caucvgprprlemexbt  6896  caucvgprprlem2  6900  elz  8353  elrp  8736  repos  8993  isprm  10491  oddpwdc  10552  sqpweven  10553  2sqpwodd  10554  qdencn  10785
  Copyright terms: Public domain W3C validator