ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rncoeq GIF version

Theorem rncoeq 4623
Description: Range of a composition. (Contributed by NM, 19-Mar-1998.)
Assertion
Ref Expression
rncoeq (dom 𝐴 = ran 𝐵 → ran (𝐴𝐵) = ran 𝐴)

Proof of Theorem rncoeq
StepHypRef Expression
1 dmcoeq 4622 . 2 (dom 𝐵 = ran 𝐴 → dom (𝐵𝐴) = dom 𝐴)
2 eqcom 2083 . . 3 (dom 𝐴 = ran 𝐵 ↔ ran 𝐵 = dom 𝐴)
3 df-rn 4374 . . . 4 ran 𝐵 = dom 𝐵
4 dfdm4 4545 . . . 4 dom 𝐴 = ran 𝐴
53, 4eqeq12i 2094 . . 3 (ran 𝐵 = dom 𝐴 ↔ dom 𝐵 = ran 𝐴)
62, 5bitri 182 . 2 (dom 𝐴 = ran 𝐵 ↔ dom 𝐵 = ran 𝐴)
7 df-rn 4374 . . . 4 ran (𝐴𝐵) = dom (𝐴𝐵)
8 cnvco 4538 . . . . 5 (𝐴𝐵) = (𝐵𝐴)
98dmeqi 4554 . . . 4 dom (𝐴𝐵) = dom (𝐵𝐴)
107, 9eqtri 2101 . . 3 ran (𝐴𝐵) = dom (𝐵𝐴)
11 df-rn 4374 . . 3 ran 𝐴 = dom 𝐴
1210, 11eqeq12i 2094 . 2 (ran (𝐴𝐵) = ran 𝐴 ↔ dom (𝐵𝐴) = dom 𝐴)
131, 6, 123imtr4i 199 1 (dom 𝐴 = ran 𝐵 → ran (𝐴𝐵) = ran 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284  ccnv 4362  dom cdm 4363  ran crn 4364  ccom 4367
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-opab 3840  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374
This theorem is referenced by:  dfdm2  4872  foco  5136
  Copyright terms: Public domain W3C validator