ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preqr2 GIF version

Theorem preqr2 3561
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
preqr2.1 𝐴 ∈ V
preqr2.2 𝐵 ∈ V
Assertion
Ref Expression
preqr2 ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵)

Proof of Theorem preqr2
StepHypRef Expression
1 prcom 3468 . . 3 {𝐶, 𝐴} = {𝐴, 𝐶}
2 prcom 3468 . . 3 {𝐶, 𝐵} = {𝐵, 𝐶}
31, 2eqeq12i 2094 . 2 ({𝐶, 𝐴} = {𝐶, 𝐵} ↔ {𝐴, 𝐶} = {𝐵, 𝐶})
4 preqr2.1 . . 3 𝐴 ∈ V
5 preqr2.2 . . 3 𝐵 ∈ V
64, 5preqr1 3560 . 2 ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵)
73, 6sylbi 119 1 ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284  wcel 1433  Vcvv 2601  {cpr 3399
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-v 2603  df-un 2977  df-sn 3404  df-pr 3405
This theorem is referenced by:  preq12b  3562  opth  3992  opthreg  4299
  Copyright terms: Public domain W3C validator