| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > f1ofn | GIF version | ||
| Description: A one-to-one onto mapping is function on its domain. (Contributed by NM, 12-Dec-2003.) |
| Ref | Expression |
|---|---|
| f1ofn | ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1of 5146 | . 2 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | ffn 5066 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝐹:𝐴–1-1-onto→𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 Fn wfn 4917 ⟶wf 4918 –1-1-onto→wf1o 4921 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 |
| This theorem depends on definitions: df-bi 115 df-f 4926 df-f1 4927 df-f1o 4929 |
| This theorem is referenced by: f1ofun 5148 f1odm 5150 isocnv2 5472 isoini 5477 isoselem 5479 bren 6251 en1 6302 phplem4 6341 phplem4on 6353 dif1en 6364 supisolem 6421 ordiso2 6446 |
| Copyright terms: Public domain | W3C validator |