ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isocnv2 GIF version

Theorem isocnv2 5472
Description: Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014.)
Assertion
Ref Expression
isocnv2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵))

Proof of Theorem isocnv2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isof1o 5467 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
2 f1ofn 5147 . . 3 (𝐻:𝐴1-1-onto𝐵𝐻 Fn 𝐴)
31, 2syl 14 . 2 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Fn 𝐴)
4 isof1o 5467 . . 3 (𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
54, 2syl 14 . 2 (𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵) → 𝐻 Fn 𝐴)
6 vex 2604 . . . . . . . . . 10 𝑥 ∈ V
7 vex 2604 . . . . . . . . . 10 𝑦 ∈ V
86, 7brcnv 4536 . . . . . . . . 9 (𝑥𝑅𝑦𝑦𝑅𝑥)
98a1i 9 . . . . . . . 8 (((𝐻 Fn 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝑥𝑅𝑦𝑦𝑅𝑥))
10 funfvex 5212 . . . . . . . . . . 11 ((Fun 𝐻𝑥 ∈ dom 𝐻) → (𝐻𝑥) ∈ V)
1110funfni 5019 . . . . . . . . . 10 ((𝐻 Fn 𝐴𝑥𝐴) → (𝐻𝑥) ∈ V)
1211adantr 270 . . . . . . . . 9 (((𝐻 Fn 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝐻𝑥) ∈ V)
13 funfvex 5212 . . . . . . . . . . 11 ((Fun 𝐻𝑦 ∈ dom 𝐻) → (𝐻𝑦) ∈ V)
1413funfni 5019 . . . . . . . . . 10 ((𝐻 Fn 𝐴𝑦𝐴) → (𝐻𝑦) ∈ V)
1514adantlr 460 . . . . . . . . 9 (((𝐻 Fn 𝐴𝑥𝐴) ∧ 𝑦𝐴) → (𝐻𝑦) ∈ V)
16 brcnvg 4534 . . . . . . . . 9 (((𝐻𝑥) ∈ V ∧ (𝐻𝑦) ∈ V) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑦)𝑆(𝐻𝑥)))
1712, 15, 16syl2anc 403 . . . . . . . 8 (((𝐻 Fn 𝐴𝑥𝐴) ∧ 𝑦𝐴) → ((𝐻𝑥)𝑆(𝐻𝑦) ↔ (𝐻𝑦)𝑆(𝐻𝑥)))
189, 17bibi12d 233 . . . . . . 7 (((𝐻 Fn 𝐴𝑥𝐴) ∧ 𝑦𝐴) → ((𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥))))
1918ralbidva 2364 . . . . . 6 ((𝐻 Fn 𝐴𝑥𝐴) → (∀𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑦𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥))))
2019ralbidva 2364 . . . . 5 (𝐻 Fn 𝐴 → (∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥))))
21 ralcom 2517 . . . . 5 (∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥)))
2220, 21syl6rbbr 197 . . . 4 (𝐻 Fn 𝐴 → (∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
2322anbi2d 451 . . 3 (𝐻 Fn 𝐴 → ((𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥))) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦)))))
24 df-isom 4931 . . 3 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑦𝐴𝑥𝐴 (𝑦𝑅𝑥 ↔ (𝐻𝑦)𝑆(𝐻𝑥))))
25 df-isom 4931 . . 3 (𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵) ↔ (𝐻:𝐴1-1-onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 ↔ (𝐻𝑥)𝑆(𝐻𝑦))))
2623, 24, 253bitr4g 221 . 2 (𝐻 Fn 𝐴 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵)))
273, 5, 26pm5.21nii 652 1 (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵))
Colors of variables: wff set class
Syntax hints:  wa 102  wb 103  wcel 1433  wral 2348  Vcvv 2601   class class class wbr 3785  ccnv 4362   Fn wfn 4917  1-1-ontowf1o 4921  cfv 4922   Isom wiso 4923
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-f1o 4929  df-fv 4930  df-isom 4931
This theorem is referenced by:  infisoti  6445
  Copyright terms: Public domain W3C validator