ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1ofn Unicode version

Theorem f1ofn 5147
Description: A one-to-one onto mapping is function on its domain. (Contributed by NM, 12-Dec-2003.)
Assertion
Ref Expression
f1ofn  |-  ( F : A -1-1-onto-> B  ->  F  Fn  A )

Proof of Theorem f1ofn
StepHypRef Expression
1 f1of 5146 . 2  |-  ( F : A -1-1-onto-> B  ->  F : A
--> B )
2 ffn 5066 . 2  |-  ( F : A --> B  ->  F  Fn  A )
31, 2syl 14 1  |-  ( F : A -1-1-onto-> B  ->  F  Fn  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    Fn wfn 4917   -->wf 4918   -1-1-onto->wf1o 4921
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104
This theorem depends on definitions:  df-bi 115  df-f 4926  df-f1 4927  df-f1o 4929
This theorem is referenced by:  f1ofun  5148  f1odm  5150  isocnv2  5472  isoini  5477  isoselem  5479  bren  6251  en1  6302  phplem4  6341  phplem4on  6353  dif1en  6364  supisolem  6421  ordiso2  6446
  Copyright terms: Public domain W3C validator