![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1ofn | Unicode version |
Description: A one-to-one onto mapping is function on its domain. (Contributed by NM, 12-Dec-2003.) |
Ref | Expression |
---|---|
f1ofn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1of 5146 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ffn 5066 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 |
This theorem depends on definitions: df-bi 115 df-f 4926 df-f1 4927 df-f1o 4929 |
This theorem is referenced by: f1ofun 5148 f1odm 5150 isocnv2 5472 isoini 5477 isoselem 5479 bren 6251 en1 6302 phplem4 6341 phplem4on 6353 dif1en 6364 supisolem 6421 ordiso2 6446 |
Copyright terms: Public domain | W3C validator |