ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  en1 GIF version

Theorem en1 6302
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.)
Assertion
Ref Expression
en1 (𝐴 ≈ 1𝑜 ↔ ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem en1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df1o2 6036 . . . . 5 1𝑜 = {∅}
21breq2i 3793 . . . 4 (𝐴 ≈ 1𝑜𝐴 ≈ {∅})
3 bren 6251 . . . 4 (𝐴 ≈ {∅} ↔ ∃𝑓 𝑓:𝐴1-1-onto→{∅})
42, 3bitri 182 . . 3 (𝐴 ≈ 1𝑜 ↔ ∃𝑓 𝑓:𝐴1-1-onto→{∅})
5 f1ocnv 5159 . . . . 5 (𝑓:𝐴1-1-onto→{∅} → 𝑓:{∅}–1-1-onto𝐴)
6 f1ofo 5153 . . . . . . . 8 (𝑓:{∅}–1-1-onto𝐴𝑓:{∅}–onto𝐴)
7 forn 5129 . . . . . . . 8 (𝑓:{∅}–onto𝐴 → ran 𝑓 = 𝐴)
86, 7syl 14 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = 𝐴)
9 f1of 5146 . . . . . . . . . 10 (𝑓:{∅}–1-1-onto𝐴𝑓:{∅}⟶𝐴)
10 0ex 3905 . . . . . . . . . . . 12 ∅ ∈ V
1110fsn2 5358 . . . . . . . . . . 11 (𝑓:{∅}⟶𝐴 ↔ ((𝑓‘∅) ∈ 𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩}))
1211simprbi 269 . . . . . . . . . 10 (𝑓:{∅}⟶𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩})
139, 12syl 14 . . . . . . . . 9 (𝑓:{∅}–1-1-onto𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩})
1413rneqd 4581 . . . . . . . 8 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = ran {⟨∅, (𝑓‘∅)⟩})
1510rnsnop 4821 . . . . . . . 8 ran {⟨∅, (𝑓‘∅)⟩} = {(𝑓‘∅)}
1614, 15syl6eq 2129 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = {(𝑓‘∅)})
178, 16eqtr3d 2115 . . . . . 6 (𝑓:{∅}–1-1-onto𝐴𝐴 = {(𝑓‘∅)})
185, 17syl 14 . . . . 5 (𝑓:𝐴1-1-onto→{∅} → 𝐴 = {(𝑓‘∅)})
19 f1ofn 5147 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴𝑓 Fn {∅})
2010snid 3425 . . . . . . 7 ∅ ∈ {∅}
21 funfvex 5212 . . . . . . . 8 ((Fun 𝑓 ∧ ∅ ∈ dom 𝑓) → (𝑓‘∅) ∈ V)
2221funfni 5019 . . . . . . 7 ((𝑓 Fn {∅} ∧ ∅ ∈ {∅}) → (𝑓‘∅) ∈ V)
2319, 20, 22sylancl 404 . . . . . 6 (𝑓:{∅}–1-1-onto𝐴 → (𝑓‘∅) ∈ V)
24 sneq 3409 . . . . . . . 8 (𝑥 = (𝑓‘∅) → {𝑥} = {(𝑓‘∅)})
2524eqeq2d 2092 . . . . . . 7 (𝑥 = (𝑓‘∅) → (𝐴 = {𝑥} ↔ 𝐴 = {(𝑓‘∅)}))
2625spcegv 2686 . . . . . 6 ((𝑓‘∅) ∈ V → (𝐴 = {(𝑓‘∅)} → ∃𝑥 𝐴 = {𝑥}))
2723, 26syl 14 . . . . 5 (𝑓:{∅}–1-1-onto𝐴 → (𝐴 = {(𝑓‘∅)} → ∃𝑥 𝐴 = {𝑥}))
285, 18, 27sylc 61 . . . 4 (𝑓:𝐴1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥})
2928exlimiv 1529 . . 3 (∃𝑓 𝑓:𝐴1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥})
304, 29sylbi 119 . 2 (𝐴 ≈ 1𝑜 → ∃𝑥 𝐴 = {𝑥})
31 vex 2604 . . . . 5 𝑥 ∈ V
3231ensn1 6299 . . . 4 {𝑥} ≈ 1𝑜
33 breq1 3788 . . . 4 (𝐴 = {𝑥} → (𝐴 ≈ 1𝑜 ↔ {𝑥} ≈ 1𝑜))
3432, 33mpbiri 166 . . 3 (𝐴 = {𝑥} → 𝐴 ≈ 1𝑜)
3534exlimiv 1529 . 2 (∃𝑥 𝐴 = {𝑥} → 𝐴 ≈ 1𝑜)
3630, 35impbii 124 1 (𝐴 ≈ 1𝑜 ↔ ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103   = wceq 1284  wex 1421  wcel 1433  Vcvv 2601  c0 3251  {csn 3398  cop 3401   class class class wbr 3785  ccnv 4362  ran crn 4364   Fn wfn 4917  wf 4918  ontowfo 4920  1-1-ontowf1o 4921  cfv 4922  1𝑜c1o 6017  cen 6242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-reu 2355  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-suc 4126  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-1o 6024  df-en 6245
This theorem is referenced by:  en1bg  6303  reuen1  6304  pm54.43  6459
  Copyright terms: Public domain W3C validator