![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > f1orn | GIF version |
Description: A one-to-one function maps onto its range. (Contributed by NM, 13-Aug-2004.) |
Ref | Expression |
---|---|
f1orn | ⊢ (𝐹:𝐴–1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff1o2 5151 | . 2 ⊢ (𝐹:𝐴–1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = ran 𝐹)) | |
2 | eqid 2081 | . . 3 ⊢ ran 𝐹 = ran 𝐹 | |
3 | df-3an 921 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = ran 𝐹) ↔ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹) ∧ ran 𝐹 = ran 𝐹)) | |
4 | 2, 3 | mpbiran2 882 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ Fun ◡𝐹 ∧ ran 𝐹 = ran 𝐹) ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹)) |
5 | 1, 4 | bitri 182 | 1 ⊢ (𝐹:𝐴–1-1-onto→ran 𝐹 ↔ (𝐹 Fn 𝐴 ∧ Fun ◡𝐹)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ↔ wb 103 ∧ w3a 919 = wceq 1284 ◡ccnv 4362 ran crn 4364 Fun wfun 4916 Fn wfn 4917 –1-1-onto→wf1o 4921 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-in 2979 df-ss 2986 df-f 4926 df-f1 4927 df-fo 4928 df-f1o 4929 |
This theorem is referenced by: f1f1orn 5157 |
Copyright terms: Public domain | W3C validator |