ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gt0add GIF version

Theorem gt0add 7673
Description: A positive sum must have a positive addend. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 26-Jan-2020.)
Assertion
Ref Expression
gt0add ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → (0 < 𝐴 ∨ 0 < 𝐵))

Proof of Theorem gt0add
StepHypRef Expression
1 simp3 940 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → 0 < (𝐴 + 𝐵))
2 0red 7120 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → 0 ∈ ℝ)
3 simp1 938 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → 𝐴 ∈ ℝ)
4 simp2 939 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → 𝐵 ∈ ℝ)
53, 4readdcld 7148 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → (𝐴 + 𝐵) ∈ ℝ)
6 axltwlin 7180 . . . 4 ((0 ∈ ℝ ∧ (𝐴 + 𝐵) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < (𝐴 + 𝐵) → (0 < 𝐴𝐴 < (𝐴 + 𝐵))))
72, 5, 3, 6syl3anc 1169 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → (0 < (𝐴 + 𝐵) → (0 < 𝐴𝐴 < (𝐴 + 𝐵))))
81, 7mpd 13 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → (0 < 𝐴𝐴 < (𝐴 + 𝐵)))
94, 3ltaddposd 7629 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → (0 < 𝐵𝐴 < (𝐴 + 𝐵)))
109orbi2d 736 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → ((0 < 𝐴 ∨ 0 < 𝐵) ↔ (0 < 𝐴𝐴 < (𝐴 + 𝐵))))
118, 10mpbird 165 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → (0 < 𝐴 ∨ 0 < 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wo 661  w3a 919  wcel 1433   class class class wbr 3785  (class class class)co 5532  cr 6980  0cc0 6981   + caddc 6984   < clt 7153
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-i2m1 7081  ax-0id 7084  ax-rnegex 7085  ax-pre-ltwlin 7089  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-xp 4369  df-iota 4887  df-fv 4930  df-ov 5535  df-pnf 7155  df-mnf 7156  df-ltxr 7158
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator