| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iffalsed | GIF version | ||
| Description: Value of the conditional operator when its first argument is false. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| iffalsed.1 | ⊢ (𝜑 → ¬ 𝜒) |
| Ref | Expression |
|---|---|
| iffalsed | ⊢ (𝜑 → if(𝜒, 𝐴, 𝐵) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iffalsed.1 | . 2 ⊢ (𝜑 → ¬ 𝜒) | |
| 2 | iffalse 3359 | . 2 ⊢ (¬ 𝜒 → if(𝜒, 𝐴, 𝐵) = 𝐵) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → if(𝜒, 𝐴, 𝐵) = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1284 ifcif 3351 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-11 1437 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-if 3352 |
| This theorem is referenced by: fzprval 9099 expinnval 9479 expnegap0 9484 gcdval 10351 eucalgf 10437 eucalginv 10438 eucalglt 10439 |
| Copyright terms: Public domain | W3C validator |