ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eucalglt GIF version

Theorem eucalglt 10439
Description: The second member of the state decreases with each iteration of the step function 𝐸 for Euclid's Algorithm. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by Mario Carneiro, 29-May-2014.)
Hypothesis
Ref Expression
eucalgval.1 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
Assertion
Ref Expression
eucalglt (𝑋 ∈ (ℕ0 × ℕ0) → ((2nd ‘(𝐸𝑋)) ≠ 0 → (2nd ‘(𝐸𝑋)) < (2nd𝑋)))
Distinct variable group:   𝑥,𝑦,𝑋
Allowed substitution hints:   𝐸(𝑥,𝑦)

Proof of Theorem eucalglt
StepHypRef Expression
1 eucalgval.1 . . . . . . . 8 𝐸 = (𝑥 ∈ ℕ0, 𝑦 ∈ ℕ0 ↦ if(𝑦 = 0, ⟨𝑥, 𝑦⟩, ⟨𝑦, (𝑥 mod 𝑦)⟩))
21eucalgval 10436 . . . . . . 7 (𝑋 ∈ (ℕ0 × ℕ0) → (𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩))
32adantr 270 . . . . . 6 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩))
4 simpr 108 . . . . . . . 8 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd ‘(𝐸𝑋)) ≠ 0)
5 iftrue 3356 . . . . . . . . . . . . 13 ((2nd𝑋) = 0 → if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) = 𝑋)
65eqeq2d 2092 . . . . . . . . . . . 12 ((2nd𝑋) = 0 → ((𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) ↔ (𝐸𝑋) = 𝑋))
7 fveq2 5198 . . . . . . . . . . . 12 ((𝐸𝑋) = 𝑋 → (2nd ‘(𝐸𝑋)) = (2nd𝑋))
86, 7syl6bi 161 . . . . . . . . . . 11 ((2nd𝑋) = 0 → ((𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) → (2nd ‘(𝐸𝑋)) = (2nd𝑋)))
9 eqeq2 2090 . . . . . . . . . . 11 ((2nd𝑋) = 0 → ((2nd ‘(𝐸𝑋)) = (2nd𝑋) ↔ (2nd ‘(𝐸𝑋)) = 0))
108, 9sylibd 147 . . . . . . . . . 10 ((2nd𝑋) = 0 → ((𝐸𝑋) = if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) → (2nd ‘(𝐸𝑋)) = 0))
113, 10syl5com 29 . . . . . . . . 9 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ((2nd𝑋) = 0 → (2nd ‘(𝐸𝑋)) = 0))
1211necon3ad 2287 . . . . . . . 8 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ((2nd ‘(𝐸𝑋)) ≠ 0 → ¬ (2nd𝑋) = 0))
134, 12mpd 13 . . . . . . 7 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ¬ (2nd𝑋) = 0)
1413iffalsed 3361 . . . . . 6 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → if((2nd𝑋) = 0, 𝑋, ⟨(2nd𝑋), ( mod ‘𝑋)⟩) = ⟨(2nd𝑋), ( mod ‘𝑋)⟩)
153, 14eqtrd 2113 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (𝐸𝑋) = ⟨(2nd𝑋), ( mod ‘𝑋)⟩)
1615fveq2d 5202 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd ‘(𝐸𝑋)) = (2nd ‘⟨(2nd𝑋), ( mod ‘𝑋)⟩))
17 xp2nd 5813 . . . . . 6 (𝑋 ∈ (ℕ0 × ℕ0) → (2nd𝑋) ∈ ℕ0)
1817adantr 270 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd𝑋) ∈ ℕ0)
19 1st2nd2 5821 . . . . . . . . 9 (𝑋 ∈ (ℕ0 × ℕ0) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
2019adantr 270 . . . . . . . 8 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
2120fveq2d 5202 . . . . . . 7 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ( mod ‘𝑋) = ( mod ‘⟨(1st𝑋), (2nd𝑋)⟩))
22 df-ov 5535 . . . . . . 7 ((1st𝑋) mod (2nd𝑋)) = ( mod ‘⟨(1st𝑋), (2nd𝑋)⟩)
2321, 22syl6eqr 2131 . . . . . 6 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ( mod ‘𝑋) = ((1st𝑋) mod (2nd𝑋)))
24 xp1st 5812 . . . . . . . . 9 (𝑋 ∈ (ℕ0 × ℕ0) → (1st𝑋) ∈ ℕ0)
2524adantr 270 . . . . . . . 8 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (1st𝑋) ∈ ℕ0)
2625nn0zd 8467 . . . . . . 7 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (1st𝑋) ∈ ℤ)
2713neqned 2252 . . . . . . . 8 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd𝑋) ≠ 0)
28 elnnne0 8302 . . . . . . . 8 ((2nd𝑋) ∈ ℕ ↔ ((2nd𝑋) ∈ ℕ0 ∧ (2nd𝑋) ≠ 0))
2918, 27, 28sylanbrc 408 . . . . . . 7 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd𝑋) ∈ ℕ)
3026, 29zmodcld 9347 . . . . . 6 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ((1st𝑋) mod (2nd𝑋)) ∈ ℕ0)
3123, 30eqeltrd 2155 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ( mod ‘𝑋) ∈ ℕ0)
32 op2ndg 5798 . . . . 5 (((2nd𝑋) ∈ ℕ0 ∧ ( mod ‘𝑋) ∈ ℕ0) → (2nd ‘⟨(2nd𝑋), ( mod ‘𝑋)⟩) = ( mod ‘𝑋))
3318, 31, 32syl2anc 403 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd ‘⟨(2nd𝑋), ( mod ‘𝑋)⟩) = ( mod ‘𝑋))
3416, 33, 233eqtrd 2117 . . 3 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd ‘(𝐸𝑋)) = ((1st𝑋) mod (2nd𝑋)))
35 zq 8711 . . . . 5 ((1st𝑋) ∈ ℤ → (1st𝑋) ∈ ℚ)
3626, 35syl 14 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (1st𝑋) ∈ ℚ)
3718nn0zd 8467 . . . . 5 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd𝑋) ∈ ℤ)
38 zq 8711 . . . . 5 ((2nd𝑋) ∈ ℤ → (2nd𝑋) ∈ ℚ)
3937, 38syl 14 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd𝑋) ∈ ℚ)
4029nngt0d 8082 . . . 4 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → 0 < (2nd𝑋))
41 modqlt 9335 . . . 4 (((1st𝑋) ∈ ℚ ∧ (2nd𝑋) ∈ ℚ ∧ 0 < (2nd𝑋)) → ((1st𝑋) mod (2nd𝑋)) < (2nd𝑋))
4236, 39, 40, 41syl3anc 1169 . . 3 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → ((1st𝑋) mod (2nd𝑋)) < (2nd𝑋))
4334, 42eqbrtrd 3805 . 2 ((𝑋 ∈ (ℕ0 × ℕ0) ∧ (2nd ‘(𝐸𝑋)) ≠ 0) → (2nd ‘(𝐸𝑋)) < (2nd𝑋))
4443ex 113 1 (𝑋 ∈ (ℕ0 × ℕ0) → ((2nd ‘(𝐸𝑋)) ≠ 0 → (2nd ‘(𝐸𝑋)) < (2nd𝑋)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102   = wceq 1284  wcel 1433  wne 2245  ifcif 3351  cop 3401   class class class wbr 3785   × cxp 4361  cfv 4922  (class class class)co 5532  cmpt2 5534  1st c1st 5785  2nd c2nd 5786  0cc0 6981   < clt 7153  cn 8039  0cn0 8288  cz 8351  cq 8704   mod cmo 9324
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-q 8705  df-rp 8735  df-fl 9274  df-mod 9325
This theorem is referenced by:  eucialgcvga  10440
  Copyright terms: Public domain W3C validator