![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fzprval | GIF version |
Description: Two ways of defining the first two values of a sequence on ℕ. (Contributed by NM, 5-Sep-2011.) |
Ref | Expression |
---|---|
fzprval | ⊢ (∀𝑥 ∈ (1...2)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1z 8377 | . . . . 5 ⊢ 1 ∈ ℤ | |
2 | fzpr 9094 | . . . . 5 ⊢ (1 ∈ ℤ → (1...(1 + 1)) = {1, (1 + 1)}) | |
3 | 1, 2 | ax-mp 7 | . . . 4 ⊢ (1...(1 + 1)) = {1, (1 + 1)} |
4 | df-2 8098 | . . . . 5 ⊢ 2 = (1 + 1) | |
5 | 4 | oveq2i 5543 | . . . 4 ⊢ (1...2) = (1...(1 + 1)) |
6 | 4 | preq2i 3473 | . . . 4 ⊢ {1, 2} = {1, (1 + 1)} |
7 | 3, 5, 6 | 3eqtr4i 2111 | . . 3 ⊢ (1...2) = {1, 2} |
8 | 7 | raleqi 2553 | . 2 ⊢ (∀𝑥 ∈ (1...2)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ∀𝑥 ∈ {1, 2} (𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵)) |
9 | 1ex 7114 | . . 3 ⊢ 1 ∈ V | |
10 | 2ex 8111 | . . 3 ⊢ 2 ∈ V | |
11 | fveq2 5198 | . . . 4 ⊢ (𝑥 = 1 → (𝐹‘𝑥) = (𝐹‘1)) | |
12 | iftrue 3356 | . . . 4 ⊢ (𝑥 = 1 → if(𝑥 = 1, 𝐴, 𝐵) = 𝐴) | |
13 | 11, 12 | eqeq12d 2095 | . . 3 ⊢ (𝑥 = 1 → ((𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ (𝐹‘1) = 𝐴)) |
14 | fveq2 5198 | . . . 4 ⊢ (𝑥 = 2 → (𝐹‘𝑥) = (𝐹‘2)) | |
15 | 1ne2 8238 | . . . . . . . 8 ⊢ 1 ≠ 2 | |
16 | 15 | necomi 2330 | . . . . . . 7 ⊢ 2 ≠ 1 |
17 | pm13.181 2327 | . . . . . . 7 ⊢ ((𝑥 = 2 ∧ 2 ≠ 1) → 𝑥 ≠ 1) | |
18 | 16, 17 | mpan2 415 | . . . . . 6 ⊢ (𝑥 = 2 → 𝑥 ≠ 1) |
19 | 18 | neneqd 2266 | . . . . 5 ⊢ (𝑥 = 2 → ¬ 𝑥 = 1) |
20 | 19 | iffalsed 3361 | . . . 4 ⊢ (𝑥 = 2 → if(𝑥 = 1, 𝐴, 𝐵) = 𝐵) |
21 | 14, 20 | eqeq12d 2095 | . . 3 ⊢ (𝑥 = 2 → ((𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ (𝐹‘2) = 𝐵)) |
22 | 9, 10, 13, 21 | ralpr 3447 | . 2 ⊢ (∀𝑥 ∈ {1, 2} (𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵)) |
23 | 8, 22 | bitri 182 | 1 ⊢ (∀𝑥 ∈ (1...2)(𝐹‘𝑥) = if(𝑥 = 1, 𝐴, 𝐵) ↔ ((𝐹‘1) = 𝐴 ∧ (𝐹‘2) = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 ↔ wb 103 = wceq 1284 ∈ wcel 1433 ≠ wne 2245 ∀wral 2348 ifcif 3351 {cpr 3399 ‘cfv 4922 (class class class)co 5532 1c1 6982 + caddc 6984 2c2 8089 ℤcz 8351 ...cfz 9029 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-1cn 7069 ax-1re 7070 ax-icn 7071 ax-addcl 7072 ax-addrcl 7073 ax-mulcl 7074 ax-addcom 7076 ax-addass 7078 ax-distr 7080 ax-i2m1 7081 ax-0lt1 7082 ax-0id 7084 ax-rnegex 7085 ax-cnre 7087 ax-pre-ltirr 7088 ax-pre-ltwlin 7089 ax-pre-lttrn 7090 ax-pre-apti 7091 ax-pre-ltadd 7092 |
This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-reu 2355 df-rab 2357 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-if 3352 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-int 3637 df-br 3786 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-fv 4930 df-riota 5488 df-ov 5535 df-oprab 5536 df-mpt2 5537 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 df-le 7159 df-sub 7281 df-neg 7282 df-inn 8040 df-2 8098 df-n0 8289 df-z 8352 df-uz 8620 df-fz 9030 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |