![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imaundir | GIF version |
Description: The image of a union. (Contributed by Jeff Hoffman, 17-Feb-2008.) |
Ref | Expression |
---|---|
imaundir | ⊢ ((𝐴 ∪ 𝐵) “ 𝐶) = ((𝐴 “ 𝐶) ∪ (𝐵 “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima 4376 | . . 3 ⊢ ((𝐴 ∪ 𝐵) “ 𝐶) = ran ((𝐴 ∪ 𝐵) ↾ 𝐶) | |
2 | resundir 4644 | . . . 4 ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) | |
3 | 2 | rneqi 4580 | . . 3 ⊢ ran ((𝐴 ∪ 𝐵) ↾ 𝐶) = ran ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) |
4 | rnun 4752 | . . 3 ⊢ ran ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) = (ran (𝐴 ↾ 𝐶) ∪ ran (𝐵 ↾ 𝐶)) | |
5 | 1, 3, 4 | 3eqtri 2105 | . 2 ⊢ ((𝐴 ∪ 𝐵) “ 𝐶) = (ran (𝐴 ↾ 𝐶) ∪ ran (𝐵 ↾ 𝐶)) |
6 | df-ima 4376 | . . 3 ⊢ (𝐴 “ 𝐶) = ran (𝐴 ↾ 𝐶) | |
7 | df-ima 4376 | . . 3 ⊢ (𝐵 “ 𝐶) = ran (𝐵 ↾ 𝐶) | |
8 | 6, 7 | uneq12i 3124 | . 2 ⊢ ((𝐴 “ 𝐶) ∪ (𝐵 “ 𝐶)) = (ran (𝐴 ↾ 𝐶) ∪ ran (𝐵 ↾ 𝐶)) |
9 | 5, 8 | eqtr4i 2104 | 1 ⊢ ((𝐴 ∪ 𝐵) “ 𝐶) = ((𝐴 “ 𝐶) ∪ (𝐵 “ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1284 ∪ cun 2971 ran crn 4364 ↾ cres 4365 “ cima 4366 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 df-cnv 4371 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 |
This theorem is referenced by: fvun1 5260 |
Copyright terms: Public domain | W3C validator |