ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  impr GIF version

Theorem impr 371
Description: Import a wff into a right conjunct. (Contributed by Jeff Hankins, 30-Aug-2009.)
Hypothesis
Ref Expression
impr.1 ((𝜑𝜓) → (𝜒𝜃))
Assertion
Ref Expression
impr ((𝜑 ∧ (𝜓𝜒)) → 𝜃)

Proof of Theorem impr
StepHypRef Expression
1 impr.1 . . 3 ((𝜑𝜓) → (𝜒𝜃))
21ex 113 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
32imp32 253 1 ((𝜑 ∧ (𝜓𝜒)) → 𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem is referenced by:  reximddv2  2465  moi2  2773  preq12bg  3565  ordsuc  4306  f1ocnv2d  5724  supisoti  6423  caucvgsrlemoffres  6976  prodge0  7932  un0addcl  8321  un0mulcl  8322  peano2uz2  8454  elfz2nn0  9128  fzind2  9248  expaddzap  9520  expmulzap  9522  cau3lem  10000  climuni  10132  climrecvg1n  10185  dvdsval2  10198  ialgcvga  10433  lcmgcdlem  10459  divgcdcoprmex  10484
  Copyright terms: Public domain W3C validator