![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > impr | GIF version |
Description: Import a wff into a right conjunct. (Contributed by Jeff Hankins, 30-Aug-2009.) |
Ref | Expression |
---|---|
impr.1 | ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
impr | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impr.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) | |
2 | 1 | ex 113 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp32 253 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem is referenced by: reximddv2 2465 moi2 2773 preq12bg 3565 ordsuc 4306 f1ocnv2d 5724 supisoti 6423 caucvgsrlemoffres 6976 prodge0 7932 un0addcl 8321 un0mulcl 8322 peano2uz2 8454 elfz2nn0 9128 fzind2 9248 expaddzap 9520 expmulzap 9522 cau3lem 10000 climuni 10132 climrecvg1n 10185 dvdsval2 10198 ialgcvga 10433 lcmgcdlem 10459 divgcdcoprmex 10484 |
Copyright terms: Public domain | W3C validator |