ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climrecvg1n GIF version

Theorem climrecvg1n 10185
Description: A Cauchy sequence of real numbers converges, existence version. The rate of convergence is fixed: all terms after the nth term must be within 𝐶 / 𝑛 of the nth term, where 𝐶 is a constant multiplier. (Contributed by Jim Kingdon, 23-Aug-2021.)
Hypotheses
Ref Expression
climrecvg1n.f (𝜑𝐹:ℕ⟶ℝ)
climrecvg1n.c (𝜑𝐶 ∈ ℝ+)
climrecvg1n.cau (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
Assertion
Ref Expression
climrecvg1n (𝜑𝐹 ∈ dom ⇝ )
Distinct variable groups:   𝐶,𝑘,𝑛   𝑘,𝐹,𝑛   𝜑,𝑘,𝑛

Proof of Theorem climrecvg1n
Dummy variables 𝑒 𝑖 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrecvg1n.f . . 3 (𝜑𝐹:ℕ⟶ℝ)
2 climrecvg1n.c . . 3 (𝜑𝐶 ∈ ℝ+)
3 climrecvg1n.cau . . . . . . . . 9 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
43r19.21bi 2449 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
54r19.21bi 2449 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))
61ad2antrr 471 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐹:ℕ⟶ℝ)
7 eluznn 8687 . . . . . . . . . 10 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
87adantll 459 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
96, 8ffvelrnd 5324 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ ℝ)
10 simplr 496 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ)
116, 10ffvelrnd 5324 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ ℝ)
122ad2antrr 471 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐶 ∈ ℝ+)
1310nnrpd 8772 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℝ+)
1412, 13rpdivcld 8791 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐶 / 𝑛) ∈ ℝ+)
1514rpred 8773 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐶 / 𝑛) ∈ ℝ)
169, 11, 15absdifltd 10064 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛) ↔ (((𝐹𝑛) − (𝐶 / 𝑛)) < (𝐹𝑘) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛)))))
175, 16mpbid 145 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((𝐹𝑛) − (𝐶 / 𝑛)) < (𝐹𝑘) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
1811, 15, 9ltsubaddd 7641 . . . . . . 7 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((𝐹𝑛) − (𝐶 / 𝑛)) < (𝐹𝑘) ↔ (𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛))))
1918anbi1d 452 . . . . . 6 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((((𝐹𝑛) − (𝐶 / 𝑛)) < (𝐹𝑘) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))) ↔ ((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛)))))
2017, 19mpbid 145 . . . . 5 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
2120ralrimiva 2434 . . . 4 ((𝜑𝑛 ∈ ℕ) → ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
2221ralrimiva 2434 . . 3 (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((𝐹𝑛) < ((𝐹𝑘) + (𝐶 / 𝑛)) ∧ (𝐹𝑘) < ((𝐹𝑛) + (𝐶 / 𝑛))))
231, 2, 22cvg1n 9872 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒)))
241adantr 270 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ ℝ) → 𝐹:ℕ⟶ℝ)
2524ad3antrrr 475 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝐹:ℕ⟶ℝ)
26 eluznn 8687 . . . . . . . . . . . 12 ((𝑖 ∈ ℕ ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑗 ∈ ℕ)
2726adantll 459 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑗 ∈ ℕ)
2825, 27ffvelrnd 5324 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → (𝐹𝑗) ∈ ℝ)
29 simpr 108 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
3029ad3antrrr 475 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑦 ∈ ℝ)
31 simpllr 500 . . . . . . . . . . 11 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑒 ∈ ℝ+)
3231rpred 8773 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → 𝑒 ∈ ℝ)
3328, 30, 32absdifltd 10064 . . . . . . . . 9 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → ((abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ ((𝑦𝑒) < (𝐹𝑗) ∧ (𝐹𝑗) < (𝑦 + 𝑒))))
3430, 32, 28ltsubaddd 7641 . . . . . . . . . 10 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → ((𝑦𝑒) < (𝐹𝑗) ↔ 𝑦 < ((𝐹𝑗) + 𝑒)))
3534anbi1d 452 . . . . . . . . 9 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → (((𝑦𝑒) < (𝐹𝑗) ∧ (𝐹𝑗) < (𝑦 + 𝑒)) ↔ (𝑦 < ((𝐹𝑗) + 𝑒) ∧ (𝐹𝑗) < (𝑦 + 𝑒))))
3633, 35bitrd 186 . . . . . . . 8 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → ((abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ (𝑦 < ((𝐹𝑗) + 𝑒) ∧ (𝐹𝑗) < (𝑦 + 𝑒))))
37 ancom 262 . . . . . . . 8 ((𝑦 < ((𝐹𝑗) + 𝑒) ∧ (𝐹𝑗) < (𝑦 + 𝑒)) ↔ ((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒)))
3836, 37syl6bb 194 . . . . . . 7 (((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) ∧ 𝑗 ∈ (ℤ𝑖)) → ((abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ ((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒))))
3938ralbidva 2364 . . . . . 6 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) ∧ 𝑖 ∈ ℕ) → (∀𝑗 ∈ (ℤ𝑖)(abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒))))
4039rexbidva 2365 . . . . 5 (((𝜑𝑦 ∈ ℝ) ∧ 𝑒 ∈ ℝ+) → (∃𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)(abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ ∃𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒))))
4140ralbidva 2364 . . . 4 ((𝜑𝑦 ∈ ℝ) → (∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)(abs‘((𝐹𝑗) − 𝑦)) < 𝑒 ↔ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒))))
42 nnuz 8654 . . . . . 6 ℕ = (ℤ‘1)
43 1zzd 8378 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℤ)
44 nnex 8045 . . . . . . . 8 ℕ ∈ V
4544a1i 9 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ℕ ∈ V)
46 reex 7107 . . . . . . . 8 ℝ ∈ V
4746a1i 9 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ℝ ∈ V)
48 fex2 5079 . . . . . . 7 ((𝐹:ℕ⟶ℝ ∧ ℕ ∈ V ∧ ℝ ∈ V) → 𝐹 ∈ V)
4924, 45, 47, 48syl3anc 1169 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 𝐹 ∈ V)
50 eqidd 2082 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) = (𝐹𝑗))
5129recnd 7147 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℂ)
5224ffvelrnda 5323 . . . . . . 7 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℝ)
5352recnd 7147 . . . . . 6 (((𝜑𝑦 ∈ ℝ) ∧ 𝑗 ∈ ℕ) → (𝐹𝑗) ∈ ℂ)
5442, 43, 49, 50, 51, 53clim2c 10123 . . . . 5 ((𝜑𝑦 ∈ ℝ) → (𝐹𝑦 ↔ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)(abs‘((𝐹𝑗) − 𝑦)) < 𝑒))
55 climrel 10119 . . . . . 6 Rel ⇝
5655releldmi 4591 . . . . 5 (𝐹𝑦𝐹 ∈ dom ⇝ )
5754, 56syl6bir 162 . . . 4 ((𝜑𝑦 ∈ ℝ) → (∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)(abs‘((𝐹𝑗) − 𝑦)) < 𝑒𝐹 ∈ dom ⇝ ))
5841, 57sylbird 168 . . 3 ((𝜑𝑦 ∈ ℝ) → (∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒)) → 𝐹 ∈ dom ⇝ ))
5958impr 371 . 2 ((𝜑 ∧ (𝑦 ∈ ℝ ∧ ∀𝑒 ∈ ℝ+𝑖 ∈ ℕ ∀𝑗 ∈ (ℤ𝑖)((𝐹𝑗) < (𝑦 + 𝑒) ∧ 𝑦 < ((𝐹𝑗) + 𝑒)))) → 𝐹 ∈ dom ⇝ )
6023, 59rexlimddv 2481 1 (𝜑𝐹 ∈ dom ⇝ )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wcel 1433  wral 2348  wrex 2349  Vcvv 2601   class class class wbr 3785  dom cdm 4363  wf 4918  cfv 4922  (class class class)co 5532  cr 6980  1c1 6982   + caddc 6984   < clt 7153  cmin 7279   / cdiv 7760  cn 8039  cuz 8619  +crp 8734  abscabs 9883  cli 10117
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-rp 8735  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885  df-clim 10118
This theorem is referenced by:  climcvg1nlem  10186
  Copyright terms: Public domain W3C validator