ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expaddzap GIF version

Theorem expaddzap 9520
Description: Sum of exponents law for integer exponentiation. (Contributed by Jim Kingdon, 10-Jun-2020.)
Assertion
Ref Expression
expaddzap (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))

Proof of Theorem expaddzap
StepHypRef Expression
1 elznn0nn 8365 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)))
2 elznn0nn 8365 . . . 4 (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℕ0 ∨ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ)))
3 expadd 9518 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
433expia 1140 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ ℕ0 → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
54adantlr 460 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0) → (𝑁 ∈ ℕ0 → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
6 expaddzaplem 9519 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ 𝑁 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
763expia 1140 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ)) → (𝑁 ∈ ℕ0 → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
85, 7jaodan 743 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℕ0 ∨ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ))) → (𝑁 ∈ ℕ0 → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
9 expaddzaplem 9519 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑁 + 𝑀)) = ((𝐴𝑁) · (𝐴𝑀)))
10 simp3 940 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℕ0)
1110nn0cnd 8343 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℂ)
12 simp2l 964 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℝ)
1312recnd 7147 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℂ)
1411, 13addcomd 7259 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → (𝑀 + 𝑁) = (𝑁 + 𝑀))
1514oveq2d 5548 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = (𝐴↑(𝑁 + 𝑀)))
16 simp1l 962 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → 𝐴 ∈ ℂ)
17 expcl 9494 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) → (𝐴𝑀) ∈ ℂ)
1816, 10, 17syl2anc 403 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → (𝐴𝑀) ∈ ℂ)
19 simp1r 963 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → 𝐴 # 0)
2013negnegd 7410 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → --𝑁 = 𝑁)
21 simp2r 965 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → -𝑁 ∈ ℕ)
2221nnnn0d 8341 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → -𝑁 ∈ ℕ0)
23 nn0negz 8385 . . . . . . . . . . . . 13 (-𝑁 ∈ ℕ0 → --𝑁 ∈ ℤ)
2422, 23syl 14 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → --𝑁 ∈ ℤ)
2520, 24eqeltrrd 2156 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → 𝑁 ∈ ℤ)
26 expclzap 9501 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴𝑁) ∈ ℂ)
2716, 19, 25, 26syl3anc 1169 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → (𝐴𝑁) ∈ ℂ)
2818, 27mulcomd 7140 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → ((𝐴𝑀) · (𝐴𝑁)) = ((𝐴𝑁) · (𝐴𝑀)))
299, 15, 283eqtr4d 2123 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) ∧ 𝑀 ∈ ℕ0) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
30293expia 1140 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑀 ∈ ℕ0 → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
3130impancom 256 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℕ0) → ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
32 simp2l 964 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑀 ∈ ℝ)
3332recnd 7147 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑀 ∈ ℂ)
34 simp3l 966 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℝ)
3534recnd 7147 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ)
3633, 35negdid 7432 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -(𝑀 + 𝑁) = (-𝑀 + -𝑁))
3736oveq2d 5548 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-(𝑀 + 𝑁)) = (𝐴↑(-𝑀 + -𝑁)))
38 simp1l 962 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 ∈ ℂ)
39 simp2r 965 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑀 ∈ ℕ)
4039nnnn0d 8341 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑀 ∈ ℕ0)
41 simp3r 967 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℕ)
4241nnnn0d 8341 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℕ0)
43 expadd 9518 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ -𝑀 ∈ ℕ0 ∧ -𝑁 ∈ ℕ0) → (𝐴↑(-𝑀 + -𝑁)) = ((𝐴↑-𝑀) · (𝐴↑-𝑁)))
4438, 40, 42, 43syl3anc 1169 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(-𝑀 + -𝑁)) = ((𝐴↑-𝑀) · (𝐴↑-𝑁)))
4537, 44eqtrd 2113 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-(𝑀 + 𝑁)) = ((𝐴↑-𝑀) · (𝐴↑-𝑁)))
4645oveq2d 5548 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / (𝐴↑-(𝑀 + 𝑁))) = (1 / ((𝐴↑-𝑀) · (𝐴↑-𝑁))))
47 1t1e1 8184 . . . . . . . . . . 11 (1 · 1) = 1
4847oveq1i 5542 . . . . . . . . . 10 ((1 · 1) / ((𝐴↑-𝑀) · (𝐴↑-𝑁))) = (1 / ((𝐴↑-𝑀) · (𝐴↑-𝑁)))
4946, 48syl6eqr 2131 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / (𝐴↑-(𝑀 + 𝑁))) = ((1 · 1) / ((𝐴↑-𝑀) · (𝐴↑-𝑁))))
50 expcl 9494 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ -𝑀 ∈ ℕ0) → (𝐴↑-𝑀) ∈ ℂ)
5138, 40, 50syl2anc 403 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑀) ∈ ℂ)
52 simp1r 963 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → 𝐴 # 0)
5340nn0zd 8467 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑀 ∈ ℤ)
54 expap0i 9508 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ -𝑀 ∈ ℤ) → (𝐴↑-𝑀) # 0)
5538, 52, 53, 54syl3anc 1169 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑀) # 0)
56 expcl 9494 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴↑-𝑁) ∈ ℂ)
5738, 42, 56syl2anc 403 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑁) ∈ ℂ)
5842nn0zd 8467 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -𝑁 ∈ ℤ)
59 expap0i 9508 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ -𝑁 ∈ ℤ) → (𝐴↑-𝑁) # 0)
6038, 52, 58, 59syl3anc 1169 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑-𝑁) # 0)
61 ax-1cn 7069 . . . . . . . . . . 11 1 ∈ ℂ
62 divmuldivap 7800 . . . . . . . . . . 11 (((1 ∈ ℂ ∧ 1 ∈ ℂ) ∧ (((𝐴↑-𝑀) ∈ ℂ ∧ (𝐴↑-𝑀) # 0) ∧ ((𝐴↑-𝑁) ∈ ℂ ∧ (𝐴↑-𝑁) # 0))) → ((1 / (𝐴↑-𝑀)) · (1 / (𝐴↑-𝑁))) = ((1 · 1) / ((𝐴↑-𝑀) · (𝐴↑-𝑁))))
6361, 61, 62mpanl12 426 . . . . . . . . . 10 ((((𝐴↑-𝑀) ∈ ℂ ∧ (𝐴↑-𝑀) # 0) ∧ ((𝐴↑-𝑁) ∈ ℂ ∧ (𝐴↑-𝑁) # 0)) → ((1 / (𝐴↑-𝑀)) · (1 / (𝐴↑-𝑁))) = ((1 · 1) / ((𝐴↑-𝑀) · (𝐴↑-𝑁))))
6451, 55, 57, 60, 63syl22anc 1170 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((1 / (𝐴↑-𝑀)) · (1 / (𝐴↑-𝑁))) = ((1 · 1) / ((𝐴↑-𝑀) · (𝐴↑-𝑁))))
6549, 64eqtr4d 2116 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (1 / (𝐴↑-(𝑀 + 𝑁))) = ((1 / (𝐴↑-𝑀)) · (1 / (𝐴↑-𝑁))))
6633, 35addcld 7138 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝑀 + 𝑁) ∈ ℂ)
6740, 42nn0addcld 8345 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (-𝑀 + -𝑁) ∈ ℕ0)
6836, 67eqeltrd 2155 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → -(𝑀 + 𝑁) ∈ ℕ0)
69 expineg2 9485 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ ((𝑀 + 𝑁) ∈ ℂ ∧ -(𝑀 + 𝑁) ∈ ℕ0)) → (𝐴↑(𝑀 + 𝑁)) = (1 / (𝐴↑-(𝑀 + 𝑁))))
7038, 52, 66, 68, 69syl22anc 1170 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(𝑀 + 𝑁)) = (1 / (𝐴↑-(𝑀 + 𝑁))))
71 expineg2 9485 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℂ ∧ -𝑀 ∈ ℕ0)) → (𝐴𝑀) = (1 / (𝐴↑-𝑀)))
7238, 52, 33, 40, 71syl22anc 1170 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴𝑀) = (1 / (𝐴↑-𝑀)))
73 expineg2 9485 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0)) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
7438, 52, 35, 42, 73syl22anc 1170 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
7572, 74oveq12d 5550 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → ((𝐴𝑀) · (𝐴𝑁)) = ((1 / (𝐴↑-𝑀)) · (1 / (𝐴↑-𝑁))))
7665, 70, 753eqtr4d 2123 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
77763expia 1140 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ)) → ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
7831, 77jaodan 743 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℕ0 ∨ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ))) → ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
798, 78jaod 669 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℕ0 ∨ (𝑀 ∈ ℝ ∧ -𝑀 ∈ ℕ))) → ((𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
802, 79sylan2b 281 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℤ) → ((𝑁 ∈ ℕ0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ)) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
811, 80syl5bi 150 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ 𝑀 ∈ ℤ) → (𝑁 ∈ ℤ → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁))))
8281impr 371 1 (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐴↑(𝑀 + 𝑁)) = ((𝐴𝑀) · (𝐴𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wo 661  w3a 919   = wceq 1284  wcel 1433   class class class wbr 3785  (class class class)co 5532  cc 6979  cr 6980  0cc0 6981  1c1 6982   + caddc 6984   · cmul 6986  -cneg 7280   # cap 7681   / cdiv 7760  cn 8039  0cn0 8288  cz 8351  cexp 9475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-iseq 9432  df-iexp 9476
This theorem is referenced by:  m1expeven  9523  expsubap  9524  expp1zap  9525
  Copyright terms: Public domain W3C validator