ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intexrabim GIF version

Theorem intexrabim 3928
Description: The intersection of an inhabited restricted class abstraction exists. (Contributed by Jim Kingdon, 27-Aug-2018.)
Assertion
Ref Expression
intexrabim (∃𝑥𝐴 𝜑 {𝑥𝐴𝜑} ∈ V)

Proof of Theorem intexrabim
StepHypRef Expression
1 intexabim 3927 . 2 (∃𝑥(𝑥𝐴𝜑) → {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
2 df-rex 2354 . 2 (∃𝑥𝐴 𝜑 ↔ ∃𝑥(𝑥𝐴𝜑))
3 df-rab 2357 . . . 4 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
43inteqi 3640 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
54eleq1i 2144 . 2 ( {𝑥𝐴𝜑} ∈ V ↔ {𝑥 ∣ (𝑥𝐴𝜑)} ∈ V)
61, 2, 53imtr4i 199 1 (∃𝑥𝐴 𝜑 {𝑥𝐴𝜑} ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wex 1421  wcel 1433  {cab 2067  wrex 2349  {crab 2352  Vcvv 2601   cint 3636
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-in 2979  df-ss 2986  df-int 3637
This theorem is referenced by:  cardcl  6450  isnumi  6451  cardval3ex  6454
  Copyright terms: Public domain W3C validator