ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cardcl GIF version

Theorem cardcl 6450
Description: The cardinality of a well-orderable set is an ordinal. (Contributed by Jim Kingdon, 30-Aug-2021.)
Assertion
Ref Expression
cardcl (∃𝑦 ∈ On 𝑦𝐴 → (card‘𝐴) ∈ On)
Distinct variable group:   𝑦,𝐴

Proof of Theorem cardcl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-card 6449 . . . 4 card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
21a1i 9 . . 3 (∃𝑦 ∈ On 𝑦𝐴 → card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥}))
3 breq2 3789 . . . . . 6 (𝑥 = 𝐴 → (𝑦𝑥𝑦𝐴))
43rabbidv 2593 . . . . 5 (𝑥 = 𝐴 → {𝑦 ∈ On ∣ 𝑦𝑥} = {𝑦 ∈ On ∣ 𝑦𝐴})
54inteqd 3641 . . . 4 (𝑥 = 𝐴 {𝑦 ∈ On ∣ 𝑦𝑥} = {𝑦 ∈ On ∣ 𝑦𝐴})
65adantl 271 . . 3 ((∃𝑦 ∈ On 𝑦𝐴𝑥 = 𝐴) → {𝑦 ∈ On ∣ 𝑦𝑥} = {𝑦 ∈ On ∣ 𝑦𝐴})
7 encv 6250 . . . . 5 (𝑦𝐴 → (𝑦 ∈ V ∧ 𝐴 ∈ V))
87simprd 112 . . . 4 (𝑦𝐴𝐴 ∈ V)
98rexlimivw 2473 . . 3 (∃𝑦 ∈ On 𝑦𝐴𝐴 ∈ V)
10 intexrabim 3928 . . 3 (∃𝑦 ∈ On 𝑦𝐴 {𝑦 ∈ On ∣ 𝑦𝐴} ∈ V)
112, 6, 9, 10fvmptd 5274 . 2 (∃𝑦 ∈ On 𝑦𝐴 → (card‘𝐴) = {𝑦 ∈ On ∣ 𝑦𝐴})
12 onintrab2im 4262 . 2 (∃𝑦 ∈ On 𝑦𝐴 {𝑦 ∈ On ∣ 𝑦𝐴} ∈ On)
1311, 12eqeltrd 2155 1 (∃𝑦 ∈ On 𝑦𝐴 → (card‘𝐴) ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284  wcel 1433  wrex 2349  {crab 2352  Vcvv 2601   cint 3636   class class class wbr 3785  cmpt 3839  Oncon0 4118  cfv 4922  cen 6242  cardccrd 6448
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-en 6245  df-card 6449
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator