ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isnumi GIF version

Theorem isnumi 6451
Description: A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
isnumi ((𝐴 ∈ On ∧ 𝐴𝐵) → 𝐵 ∈ dom card)

Proof of Theorem isnumi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3788 . . . . 5 (𝑦 = 𝐴 → (𝑦𝐵𝐴𝐵))
21rspcev 2701 . . . 4 ((𝐴 ∈ On ∧ 𝐴𝐵) → ∃𝑦 ∈ On 𝑦𝐵)
3 intexrabim 3928 . . . 4 (∃𝑦 ∈ On 𝑦𝐵 {𝑦 ∈ On ∣ 𝑦𝐵} ∈ V)
42, 3syl 14 . . 3 ((𝐴 ∈ On ∧ 𝐴𝐵) → {𝑦 ∈ On ∣ 𝑦𝐵} ∈ V)
5 encv 6250 . . . . . 6 (𝐴𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V))
65simprd 112 . . . . 5 (𝐴𝐵𝐵 ∈ V)
7 breq2 3789 . . . . . . . . 9 (𝑥 = 𝐵 → (𝑦𝑥𝑦𝐵))
87rabbidv 2593 . . . . . . . 8 (𝑥 = 𝐵 → {𝑦 ∈ On ∣ 𝑦𝑥} = {𝑦 ∈ On ∣ 𝑦𝐵})
98inteqd 3641 . . . . . . 7 (𝑥 = 𝐵 {𝑦 ∈ On ∣ 𝑦𝑥} = {𝑦 ∈ On ∣ 𝑦𝐵})
109eleq1d 2147 . . . . . 6 (𝑥 = 𝐵 → ( {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V ↔ {𝑦 ∈ On ∣ 𝑦𝐵} ∈ V))
1110elrab3 2750 . . . . 5 (𝐵 ∈ V → (𝐵 ∈ {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V} ↔ {𝑦 ∈ On ∣ 𝑦𝐵} ∈ V))
126, 11syl 14 . . . 4 (𝐴𝐵 → (𝐵 ∈ {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V} ↔ {𝑦 ∈ On ∣ 𝑦𝐵} ∈ V))
1312adantl 271 . . 3 ((𝐴 ∈ On ∧ 𝐴𝐵) → (𝐵 ∈ {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V} ↔ {𝑦 ∈ On ∣ 𝑦𝐵} ∈ V))
144, 13mpbird 165 . 2 ((𝐴 ∈ On ∧ 𝐴𝐵) → 𝐵 ∈ {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V})
15 df-card 6449 . . 3 card = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦𝑥})
1615dmmpt 4836 . 2 dom card = {𝑥 ∈ V ∣ {𝑦 ∈ On ∣ 𝑦𝑥} ∈ V}
1714, 16syl6eleqr 2172 1 ((𝐴 ∈ On ∧ 𝐴𝐵) → 𝐵 ∈ dom card)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  wrex 2349  {crab 2352  Vcvv 2601   cint 3636   class class class wbr 3785  Oncon0 4118  dom cdm 4363  cen 6242  cardccrd 6448
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-xp 4369  df-rel 4370  df-cnv 4371  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-en 6245  df-card 6449
This theorem is referenced by:  finnum  6452  onenon  6453
  Copyright terms: Public domain W3C validator