![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isnumi | GIF version |
Description: A set equinumerous to an ordinal is numerable. (Contributed by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
isnumi | ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ dom card) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 3788 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ≈ 𝐵 ↔ 𝐴 ≈ 𝐵)) | |
2 | 1 | rspcev 2701 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → ∃𝑦 ∈ On 𝑦 ≈ 𝐵) |
3 | intexrabim 3928 | . . . 4 ⊢ (∃𝑦 ∈ On 𝑦 ≈ 𝐵 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V) | |
4 | 2, 3 | syl 14 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V) |
5 | encv 6250 | . . . . . 6 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
6 | 5 | simprd 112 | . . . . 5 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) |
7 | breq2 3789 | . . . . . . . . 9 ⊢ (𝑥 = 𝐵 → (𝑦 ≈ 𝑥 ↔ 𝑦 ≈ 𝐵)) | |
8 | 7 | rabbidv 2593 | . . . . . . . 8 ⊢ (𝑥 = 𝐵 → {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} = {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵}) |
9 | 8 | inteqd 3641 | . . . . . . 7 ⊢ (𝑥 = 𝐵 → ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} = ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵}) |
10 | 9 | eleq1d 2147 | . . . . . 6 ⊢ (𝑥 = 𝐵 → (∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V ↔ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V)) |
11 | 10 | elrab3 2750 | . . . . 5 ⊢ (𝐵 ∈ V → (𝐵 ∈ {𝑥 ∈ V ∣ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V} ↔ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V)) |
12 | 6, 11 | syl 14 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → (𝐵 ∈ {𝑥 ∈ V ∣ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V} ↔ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V)) |
13 | 12 | adantl 271 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → (𝐵 ∈ {𝑥 ∈ V ∣ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V} ↔ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝐵} ∈ V)) |
14 | 4, 13 | mpbird 165 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ {𝑥 ∈ V ∣ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V}) |
15 | df-card 6449 | . . 3 ⊢ card = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥}) | |
16 | 15 | dmmpt 4836 | . 2 ⊢ dom card = {𝑥 ∈ V ∣ ∩ {𝑦 ∈ On ∣ 𝑦 ≈ 𝑥} ∈ V} |
17 | 14, 16 | syl6eleqr 2172 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐴 ≈ 𝐵) → 𝐵 ∈ dom card) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∈ wcel 1433 ∃wrex 2349 {crab 2352 Vcvv 2601 ∩ cint 3636 class class class wbr 3785 Oncon0 4118 dom cdm 4363 ≈ cen 6242 cardccrd 6448 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-int 3637 df-br 3786 df-opab 3840 df-mpt 3841 df-xp 4369 df-rel 4370 df-cnv 4371 df-dm 4373 df-rn 4374 df-res 4375 df-ima 4376 df-en 6245 df-card 6449 |
This theorem is referenced by: finnum 6452 onenon 6453 |
Copyright terms: Public domain | W3C validator |