ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isoresbr GIF version

Theorem isoresbr 5469
Description: A consequence of isomorphism on two relations for a function's restriction. (Contributed by Jim Kingdon, 11-Jan-2019.)
Assertion
Ref Expression
isoresbr ((𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹𝐴)) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦

Proof of Theorem isoresbr
StepHypRef Expression
1 isorel 5468 . . . 4 (((𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹𝐴)) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑅𝑦 ↔ ((𝐹𝐴)‘𝑥)𝑆((𝐹𝐴)‘𝑦)))
2 fvres 5219 . . . . . 6 (𝑥𝐴 → ((𝐹𝐴)‘𝑥) = (𝐹𝑥))
3 fvres 5219 . . . . . 6 (𝑦𝐴 → ((𝐹𝐴)‘𝑦) = (𝐹𝑦))
42, 3breqan12d 3800 . . . . 5 ((𝑥𝐴𝑦𝐴) → (((𝐹𝐴)‘𝑥)𝑆((𝐹𝐴)‘𝑦) ↔ (𝐹𝑥)𝑆(𝐹𝑦)))
54adantl 271 . . . 4 (((𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹𝐴)) ∧ (𝑥𝐴𝑦𝐴)) → (((𝐹𝐴)‘𝑥)𝑆((𝐹𝐴)‘𝑦) ↔ (𝐹𝑥)𝑆(𝐹𝑦)))
61, 5bitrd 186 . . 3 (((𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹𝐴)) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑅𝑦 ↔ (𝐹𝑥)𝑆(𝐹𝑦)))
76biimpd 142 . 2 (((𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹𝐴)) ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦)))
87ralrimivva 2443 1 ((𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹𝐴)) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wcel 1433  wral 2348   class class class wbr 3785  cres 4365  cima 4366  cfv 4922   Isom wiso 4923
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-xp 4369  df-res 4375  df-iota 4887  df-fv 4930  df-isom 4931
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator