![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > isprmpt2 | GIF version |
Description: Properties of a pair in an extended binary relation. (Contributed by Alexander van der Vekens, 30-Oct-2017.) |
Ref | Expression |
---|---|
isprmpt2.1 | ⊢ (𝜑 → 𝑀 = {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)}) |
isprmpt2.2 | ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
isprmpt2 | ⊢ (𝜑 → ((𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ 𝜒)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-br 3786 | . . . 4 ⊢ (𝐹𝑀𝑃 ↔ 〈𝐹, 𝑃〉 ∈ 𝑀) | |
2 | isprmpt2.1 | . . . . . 6 ⊢ (𝜑 → 𝑀 = {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)}) | |
3 | 2 | adantr 270 | . . . . 5 ⊢ ((𝜑 ∧ (𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌)) → 𝑀 = {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)}) |
4 | 3 | eleq2d 2148 | . . . 4 ⊢ ((𝜑 ∧ (𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌)) → (〈𝐹, 𝑃〉 ∈ 𝑀 ↔ 〈𝐹, 𝑃〉 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)})) |
5 | 1, 4 | syl5bb 190 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌)) → (𝐹𝑀𝑃 ↔ 〈𝐹, 𝑃〉 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)})) |
6 | breq12 3790 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑓𝑊𝑝 ↔ 𝐹𝑊𝑃)) | |
7 | isprmpt2.2 | . . . . . 6 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝜓 ↔ 𝜒)) | |
8 | 6, 7 | anbi12d 456 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝑓𝑊𝑝 ∧ 𝜓) ↔ (𝐹𝑊𝑃 ∧ 𝜒))) |
9 | 8 | opelopabga 4018 | . . . 4 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (〈𝐹, 𝑃〉 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)} ↔ (𝐹𝑊𝑃 ∧ 𝜒))) |
10 | 9 | adantl 271 | . . 3 ⊢ ((𝜑 ∧ (𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌)) → (〈𝐹, 𝑃〉 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)} ↔ (𝐹𝑊𝑃 ∧ 𝜒))) |
11 | 5, 10 | bitrd 186 | . 2 ⊢ ((𝜑 ∧ (𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌)) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ 𝜒))) |
12 | 11 | ex 113 | 1 ⊢ (𝜑 → ((𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ 𝜒)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1284 ∈ wcel 1433 〈cop 3401 class class class wbr 3785 {copab 3838 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-br 3786 df-opab 3840 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |