ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunxpf GIF version

Theorem iunxpf 4502
Description: Indexed union on a cross product is equals a double indexed union. The hypothesis specifies an implicit substitution. (Contributed by NM, 19-Dec-2008.)
Hypotheses
Ref Expression
iunxpf.1 𝑦𝐶
iunxpf.2 𝑧𝐶
iunxpf.3 𝑥𝐷
iunxpf.4 (𝑥 = ⟨𝑦, 𝑧⟩ → 𝐶 = 𝐷)
Assertion
Ref Expression
iunxpf 𝑥 ∈ (𝐴 × 𝐵)𝐶 = 𝑦𝐴 𝑧𝐵 𝐷
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑧,𝐵,𝑦
Allowed substitution hints:   𝐴(𝑧)   𝐶(𝑥,𝑦,𝑧)   𝐷(𝑥,𝑦,𝑧)

Proof of Theorem iunxpf
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 iunxpf.1 . . . . 5 𝑦𝐶
21nfcri 2213 . . . 4 𝑦 𝑤𝐶
3 iunxpf.2 . . . . 5 𝑧𝐶
43nfcri 2213 . . . 4 𝑧 𝑤𝐶
5 iunxpf.3 . . . . 5 𝑥𝐷
65nfcri 2213 . . . 4 𝑥 𝑤𝐷
7 iunxpf.4 . . . . 5 (𝑥 = ⟨𝑦, 𝑧⟩ → 𝐶 = 𝐷)
87eleq2d 2148 . . . 4 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑤𝐶𝑤𝐷))
92, 4, 6, 8rexxpf 4501 . . 3 (∃𝑥 ∈ (𝐴 × 𝐵)𝑤𝐶 ↔ ∃𝑦𝐴𝑧𝐵 𝑤𝐷)
10 eliun 3682 . . 3 (𝑤 𝑥 ∈ (𝐴 × 𝐵)𝐶 ↔ ∃𝑥 ∈ (𝐴 × 𝐵)𝑤𝐶)
11 eliun 3682 . . . 4 (𝑤 𝑦𝐴 𝑧𝐵 𝐷 ↔ ∃𝑦𝐴 𝑤 𝑧𝐵 𝐷)
12 eliun 3682 . . . . 5 (𝑤 𝑧𝐵 𝐷 ↔ ∃𝑧𝐵 𝑤𝐷)
1312rexbii 2373 . . . 4 (∃𝑦𝐴 𝑤 𝑧𝐵 𝐷 ↔ ∃𝑦𝐴𝑧𝐵 𝑤𝐷)
1411, 13bitri 182 . . 3 (𝑤 𝑦𝐴 𝑧𝐵 𝐷 ↔ ∃𝑦𝐴𝑧𝐵 𝑤𝐷)
159, 10, 143bitr4i 210 . 2 (𝑤 𝑥 ∈ (𝐴 × 𝐵)𝐶𝑤 𝑦𝐴 𝑧𝐵 𝐷)
1615eqriv 2078 1 𝑥 ∈ (𝐴 × 𝐵)𝐶 = 𝑦𝐴 𝑧𝐵 𝐷
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1284  wcel 1433  wnfc 2206  wrex 2349  cop 3401   ciun 3678   × cxp 4361
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-v 2603  df-sbc 2816  df-csb 2909  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-iun 3680  df-opab 3840  df-xp 4369  df-rel 4370
This theorem is referenced by:  dfmpt2  5864
  Copyright terms: Public domain W3C validator