![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mptresid | GIF version |
Description: The restricted identity expressed with the "maps to" notation. (Contributed by FL, 25-Apr-2012.) |
Ref | Expression |
---|---|
mptresid | ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = ( I ↾ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mpt 3841 | . 2 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} | |
2 | opabresid 4679 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑥)} = ( I ↾ 𝐴) | |
3 | 1, 2 | eqtri 2101 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝑥) = ( I ↾ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 102 = wceq 1284 ∈ wcel 1433 {copab 3838 ↦ cmpt 3839 I cid 4043 ↾ cres 4365 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-opab 3840 df-mpt 3841 df-id 4048 df-xp 4369 df-rel 4370 df-res 4375 |
This theorem is referenced by: idref 5417 |
Copyright terms: Public domain | W3C validator |