![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ngtmnft | GIF version |
Description: An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.) |
Ref | Expression |
---|---|
ngtmnft | ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxr 8850 | . 2 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
2 | renemnf 7167 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ -∞) | |
3 | 2 | neneqd 2266 | . . . 4 ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 = -∞) |
4 | mnflt 8858 | . . . . 5 ⊢ (𝐴 ∈ ℝ → -∞ < 𝐴) | |
5 | notnot 591 | . . . . 5 ⊢ (-∞ < 𝐴 → ¬ ¬ -∞ < 𝐴) | |
6 | 4, 5 | syl 14 | . . . 4 ⊢ (𝐴 ∈ ℝ → ¬ ¬ -∞ < 𝐴) |
7 | 3, 6 | 2falsed 650 | . . 3 ⊢ (𝐴 ∈ ℝ → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
8 | pnfnemnf 8851 | . . . . . 6 ⊢ +∞ ≠ -∞ | |
9 | neeq1 2258 | . . . . . 6 ⊢ (𝐴 = +∞ → (𝐴 ≠ -∞ ↔ +∞ ≠ -∞)) | |
10 | 8, 9 | mpbiri 166 | . . . . 5 ⊢ (𝐴 = +∞ → 𝐴 ≠ -∞) |
11 | 10 | neneqd 2266 | . . . 4 ⊢ (𝐴 = +∞ → ¬ 𝐴 = -∞) |
12 | mnfltpnf 8860 | . . . . . . 7 ⊢ -∞ < +∞ | |
13 | breq2 3789 | . . . . . . 7 ⊢ (𝐴 = +∞ → (-∞ < 𝐴 ↔ -∞ < +∞)) | |
14 | 12, 13 | mpbiri 166 | . . . . . 6 ⊢ (𝐴 = +∞ → -∞ < 𝐴) |
15 | 14 | necon3bi 2295 | . . . . 5 ⊢ (¬ -∞ < 𝐴 → 𝐴 ≠ +∞) |
16 | 15 | necon2bi 2300 | . . . 4 ⊢ (𝐴 = +∞ → ¬ ¬ -∞ < 𝐴) |
17 | 11, 16 | 2falsed 650 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
18 | id 19 | . . . 4 ⊢ (𝐴 = -∞ → 𝐴 = -∞) | |
19 | mnfxr 8848 | . . . . . 6 ⊢ -∞ ∈ ℝ* | |
20 | xrltnr 8855 | . . . . . 6 ⊢ (-∞ ∈ ℝ* → ¬ -∞ < -∞) | |
21 | 19, 20 | ax-mp 7 | . . . . 5 ⊢ ¬ -∞ < -∞ |
22 | breq2 3789 | . . . . 5 ⊢ (𝐴 = -∞ → (-∞ < 𝐴 ↔ -∞ < -∞)) | |
23 | 21, 22 | mtbiri 632 | . . . 4 ⊢ (𝐴 = -∞ → ¬ -∞ < 𝐴) |
24 | 18, 23 | 2thd 173 | . . 3 ⊢ (𝐴 = -∞ → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
25 | 7, 17, 24 | 3jaoi 1234 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
26 | 1, 25 | sylbi 119 | 1 ⊢ (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 103 ∨ w3o 918 = wceq 1284 ∈ wcel 1433 ≠ wne 2245 class class class wbr 3785 ℝcr 6980 +∞cpnf 7150 -∞cmnf 7151 ℝ*cxr 7152 < clt 7153 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 ax-un 4188 ax-setind 4280 ax-cnex 7067 ax-resscn 7068 ax-pre-ltirr 7088 |
This theorem depends on definitions: df-bi 115 df-3or 920 df-3an 921 df-tru 1287 df-fal 1290 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-nel 2340 df-ral 2353 df-rex 2354 df-rab 2357 df-v 2603 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-xp 4369 df-pnf 7155 df-mnf 7156 df-xr 7157 df-ltxr 7158 |
This theorem is referenced by: ge0nemnf 8891 |
Copyright terms: Public domain | W3C validator |