| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nelpri | GIF version | ||
| Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair. (Contributed by David A. Wheeler, 10-May-2015.) |
| Ref | Expression |
|---|---|
| nelpri.1 | ⊢ 𝐴 ≠ 𝐵 |
| nelpri.2 | ⊢ 𝐴 ≠ 𝐶 |
| Ref | Expression |
|---|---|
| nelpri | ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelpri.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | nelpri.2 | . 2 ⊢ 𝐴 ≠ 𝐶 | |
| 3 | neanior 2332 | . . 3 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
| 4 | elpri 3421 | . . . 4 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
| 5 | 4 | con3i 594 | . . 3 ⊢ (¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
| 6 | 3, 5 | sylbi 119 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
| 7 | 1, 2, 6 | mp2an 416 | 1 ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 ∧ wa 102 ∨ wo 661 = wceq 1284 ∈ wcel 1433 ≠ wne 2245 {cpr 3399 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
| This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-v 2603 df-un 2977 df-sn 3404 df-pr 3405 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |