![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > orbi2i | GIF version |
Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
Ref | Expression |
---|---|
orbi2i.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
orbi2i | ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi2i.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | biimpi 118 | . . 3 ⊢ (𝜑 → 𝜓) |
3 | 2 | orim2i 710 | . 2 ⊢ ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓)) |
4 | 1 | biimpri 131 | . . 3 ⊢ (𝜓 → 𝜑) |
5 | 4 | orim2i 710 | . 2 ⊢ ((𝜒 ∨ 𝜓) → (𝜒 ∨ 𝜑)) |
6 | 3, 5 | impbii 124 | 1 ⊢ ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 103 ∨ wo 661 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: orbi1i 712 orbi12i 713 orass 716 or4 720 or42 721 orordir 723 testbitestn 856 orbididc 894 3orcomb 928 excxor 1309 xordc 1323 nf4dc 1600 nf4r 1601 19.44 1612 dveeq2 1736 dvelimALT 1927 dvelimfv 1928 dvelimor 1935 dcne 2256 unass 3129 undi 3212 undif3ss 3225 symdifxor 3230 undif4 3306 iinuniss 3758 ordsucim 4244 suc11g 4300 qfto 4734 nntri3or 6095 reapcotr 7698 elnn0 8290 elnn1uz2 8694 nn01to3 8702 elxr 8850 lcmdvds 10461 mulgcddvds 10476 cncongr2 10486 bj-peano4 10750 |
Copyright terms: Public domain | W3C validator |