ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfan1 GIF version

Theorem nfan1 1496
Description: A closed form of nfan 1497. (Contributed by Mario Carneiro, 3-Oct-2016.)
Hypotheses
Ref Expression
nfan1.1 𝑥𝜑
nfan1.2 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfan1 𝑥(𝜑𝜓)

Proof of Theorem nfan1
StepHypRef Expression
1 nfan1.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
21nfrd 1453 . . . 4 (𝜑 → (𝜓 → ∀𝑥𝜓))
32imdistani 433 . . 3 ((𝜑𝜓) → (𝜑 ∧ ∀𝑥𝜓))
4 nfan1.1 . . . . 5 𝑥𝜑
54nfri 1452 . . . 4 (𝜑 → ∀𝑥𝜑)
6519.28h 1494 . . 3 (∀𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓))
73, 6sylibr 132 . 2 ((𝜑𝜓) → ∀𝑥(𝜑𝜓))
87nfi 1391 1 𝑥(𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wal 1282  wnf 1389
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1376  ax-gen 1378  ax-4 1440
This theorem depends on definitions:  df-bi 115  df-nf 1390
This theorem is referenced by:  nfan  1497  sbcralt  2890  sbcrext  2891  csbiebt  2942  riota5f  5512
  Copyright terms: Public domain W3C validator