| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfan1 | GIF version | ||
| Description: A closed form of nfan 1497. (Contributed by Mario Carneiro, 3-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfan1.1 | ⊢ Ⅎ𝑥𝜑 |
| nfan1.2 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfan1 | ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfan1.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 2 | 1 | nfrd 1453 | . . . 4 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
| 3 | 2 | imdistani 433 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝜑 ∧ ∀𝑥𝜓)) |
| 4 | nfan1.1 | . . . . 5 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 4 | nfri 1452 | . . . 4 ⊢ (𝜑 → ∀𝑥𝜑) |
| 6 | 5 | 19.28h 1494 | . . 3 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥𝜓)) |
| 7 | 3, 6 | sylibr 132 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ∀𝑥(𝜑 ∧ 𝜓)) |
| 8 | 7 | nfi 1391 | 1 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 102 ∀wal 1282 Ⅎwnf 1389 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-4 1440 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 |
| This theorem is referenced by: nfan 1497 sbcralt 2890 sbcrext 2891 csbiebt 2942 riota5f 5512 |
| Copyright terms: Public domain | W3C validator |