ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  riota5f GIF version

Theorem riota5f 5512
Description: A method for computing restricted iota. (Contributed by NM, 16-Apr-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
riota5f.1 (𝜑𝑥𝐵)
riota5f.2 (𝜑𝐵𝐴)
riota5f.3 ((𝜑𝑥𝐴) → (𝜓𝑥 = 𝐵))
Assertion
Ref Expression
riota5f (𝜑 → (𝑥𝐴 𝜓) = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐵(𝑥)

Proof of Theorem riota5f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 riota5f.3 . . 3 ((𝜑𝑥𝐴) → (𝜓𝑥 = 𝐵))
21ralrimiva 2434 . 2 (𝜑 → ∀𝑥𝐴 (𝜓𝑥 = 𝐵))
3 riota5f.2 . . . 4 (𝜑𝐵𝐴)
4 a1tru 1300 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) → ⊤)
5 reu6i 2783 . . . . . . . . 9 ((𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦)) → ∃!𝑥𝐴 𝜓)
65adantl 271 . . . . . . . 8 ((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) → ∃!𝑥𝐴 𝜓)
7 nfv 1461 . . . . . . . . . 10 𝑥𝜑
8 nfv 1461 . . . . . . . . . . 11 𝑥 𝑦𝐴
9 nfra1 2397 . . . . . . . . . . 11 𝑥𝑥𝐴 (𝜓𝑥 = 𝑦)
108, 9nfan 1497 . . . . . . . . . 10 𝑥(𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))
117, 10nfan 1497 . . . . . . . . 9 𝑥(𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦)))
12 nfcvd 2220 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) → 𝑥𝑦)
13 nfvd 1462 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) → Ⅎ𝑥⊤)
14 simprl 497 . . . . . . . . 9 ((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) → 𝑦𝐴)
15 simpr 108 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦)
16 simplrr 502 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → ∀𝑥𝐴 (𝜓𝑥 = 𝑦))
17 simplrl 501 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → 𝑦𝐴)
1815, 17eqeltrd 2155 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → 𝑥𝐴)
19 rsp 2411 . . . . . . . . . . . 12 (∀𝑥𝐴 (𝜓𝑥 = 𝑦) → (𝑥𝐴 → (𝜓𝑥 = 𝑦)))
2016, 18, 19sylc 61 . . . . . . . . . . 11 (((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → (𝜓𝑥 = 𝑦))
2115, 20mpbird 165 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → 𝜓)
22 a1tru 1300 . . . . . . . . . 10 (((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → ⊤)
2321, 222thd 173 . . . . . . . . 9 (((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → (𝜓 ↔ ⊤))
2411, 12, 13, 14, 23riota2df 5508 . . . . . . . 8 (((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) ∧ ∃!𝑥𝐴 𝜓) → (⊤ ↔ (𝑥𝐴 𝜓) = 𝑦))
256, 24mpdan 412 . . . . . . 7 ((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) → (⊤ ↔ (𝑥𝐴 𝜓) = 𝑦))
264, 25mpbid 145 . . . . . 6 ((𝜑 ∧ (𝑦𝐴 ∧ ∀𝑥𝐴 (𝜓𝑥 = 𝑦))) → (𝑥𝐴 𝜓) = 𝑦)
2726expr 367 . . . . 5 ((𝜑𝑦𝐴) → (∀𝑥𝐴 (𝜓𝑥 = 𝑦) → (𝑥𝐴 𝜓) = 𝑦))
2827ralrimiva 2434 . . . 4 (𝜑 → ∀𝑦𝐴 (∀𝑥𝐴 (𝜓𝑥 = 𝑦) → (𝑥𝐴 𝜓) = 𝑦))
29 rspsbc 2896 . . . 4 (𝐵𝐴 → (∀𝑦𝐴 (∀𝑥𝐴 (𝜓𝑥 = 𝑦) → (𝑥𝐴 𝜓) = 𝑦) → [𝐵 / 𝑦](∀𝑥𝐴 (𝜓𝑥 = 𝑦) → (𝑥𝐴 𝜓) = 𝑦)))
303, 28, 29sylc 61 . . 3 (𝜑[𝐵 / 𝑦](∀𝑥𝐴 (𝜓𝑥 = 𝑦) → (𝑥𝐴 𝜓) = 𝑦))
31 nfcvd 2220 . . . . . . . 8 (𝜑𝑥𝑦)
32 riota5f.1 . . . . . . . 8 (𝜑𝑥𝐵)
3331, 32nfeqd 2233 . . . . . . 7 (𝜑 → Ⅎ𝑥 𝑦 = 𝐵)
347, 33nfan1 1496 . . . . . 6 𝑥(𝜑𝑦 = 𝐵)
35 simpr 108 . . . . . . . 8 ((𝜑𝑦 = 𝐵) → 𝑦 = 𝐵)
3635eqeq2d 2092 . . . . . . 7 ((𝜑𝑦 = 𝐵) → (𝑥 = 𝑦𝑥 = 𝐵))
3736bibi2d 230 . . . . . 6 ((𝜑𝑦 = 𝐵) → ((𝜓𝑥 = 𝑦) ↔ (𝜓𝑥 = 𝐵)))
3834, 37ralbid 2366 . . . . 5 ((𝜑𝑦 = 𝐵) → (∀𝑥𝐴 (𝜓𝑥 = 𝑦) ↔ ∀𝑥𝐴 (𝜓𝑥 = 𝐵)))
3935eqeq2d 2092 . . . . 5 ((𝜑𝑦 = 𝐵) → ((𝑥𝐴 𝜓) = 𝑦 ↔ (𝑥𝐴 𝜓) = 𝐵))
4038, 39imbi12d 232 . . . 4 ((𝜑𝑦 = 𝐵) → ((∀𝑥𝐴 (𝜓𝑥 = 𝑦) → (𝑥𝐴 𝜓) = 𝑦) ↔ (∀𝑥𝐴 (𝜓𝑥 = 𝐵) → (𝑥𝐴 𝜓) = 𝐵)))
413, 40sbcied 2850 . . 3 (𝜑 → ([𝐵 / 𝑦](∀𝑥𝐴 (𝜓𝑥 = 𝑦) → (𝑥𝐴 𝜓) = 𝑦) ↔ (∀𝑥𝐴 (𝜓𝑥 = 𝐵) → (𝑥𝐴 𝜓) = 𝐵)))
4230, 41mpbid 145 . 2 (𝜑 → (∀𝑥𝐴 (𝜓𝑥 = 𝐵) → (𝑥𝐴 𝜓) = 𝐵))
432, 42mpd 13 1 (𝜑 → (𝑥𝐴 𝜓) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wtru 1285  wcel 1433  wnfc 2206  wral 2348  ∃!wreu 2350  [wsbc 2815  crio 5487
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-reu 2355  df-v 2603  df-sbc 2816  df-un 2977  df-sn 3404  df-pr 3405  df-uni 3602  df-iota 4887  df-riota 5488
This theorem is referenced by:  riota5  5513
  Copyright terms: Public domain W3C validator