| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfnfc1 | GIF version | ||
| Description: 𝑥 is bound in Ⅎ𝑥𝐴. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfnfc1 | ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nfc 2208 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 2 | nfnf1 1476 | . . 3 ⊢ Ⅎ𝑥Ⅎ𝑥 𝑦 ∈ 𝐴 | |
| 3 | 2 | nfal 1508 | . 2 ⊢ Ⅎ𝑥∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | 1, 3 | nfxfr 1403 | 1 ⊢ Ⅎ𝑥Ⅎ𝑥𝐴 |
| Colors of variables: wff set class |
| Syntax hints: ∀wal 1282 Ⅎwnf 1389 ∈ wcel 1433 Ⅎwnfc 2206 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-7 1377 ax-gen 1378 ax-4 1440 ax-ial 1467 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-nfc 2208 |
| This theorem is referenced by: vtoclgft 2649 sbcralt 2890 sbcrext 2891 csbiebt 2942 nfopd 3587 nfimad 4697 nffvd 5207 |
| Copyright terms: Public domain | W3C validator |