| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfre1 | GIF version | ||
| Description: 𝑥 is not free in ∃𝑥 ∈ 𝐴𝜑. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfre1 | ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 2354 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | nfe1 1425 | . 2 ⊢ Ⅎ𝑥∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) | |
| 3 | 1, 2 | nfxfr 1403 | 1 ⊢ Ⅎ𝑥∃𝑥 ∈ 𝐴 𝜑 |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 102 Ⅎwnf 1389 ∃wex 1421 ∈ wcel 1433 ∃wrex 2349 |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1376 ax-gen 1378 ax-ie1 1422 |
| This theorem depends on definitions: df-bi 115 df-nf 1390 df-rex 2354 |
| This theorem is referenced by: nfiu1 3708 fun11iun 5167 eusvobj2 5518 prarloclem3step 6686 prmuloc2 6757 ltexprlemm 6790 caucvgprprlemaddq 6898 caucvgsrlemgt1 6971 supinfneg 8683 infsupneg 8684 lbzbi 8701 divalglemeunn 10321 divalglemeuneg 10323 bezoutlemmain 10387 bezout 10400 |
| Copyright terms: Public domain | W3C validator |